ARC-NLP at PAN 2023: Transition-Focused Natural Language Inference for Writing Style Detection

Izzet Emre Kucukkaya, Umitcan Sahin, Cagri Toraman
{"title":"ARC-NLP at PAN 2023: Transition-Focused Natural Language Inference for Writing Style Detection","authors":"Izzet Emre Kucukkaya, Umitcan Sahin, Cagri Toraman","doi":"10.48550/arXiv.2307.14913","DOIUrl":null,"url":null,"abstract":"The task of multi-author writing style detection aims at finding any positions of writing style change in a given text document. We formulate the task as a natural language inference problem where two consecutive paragraphs are paired. Our approach focuses on transitions between paragraphs while truncating input tokens for the task. As backbone models, we employ different Transformer-based encoders with warmup phase during training. We submit the model version that outperforms baselines and other proposed model versions in our experiments. For the easy and medium setups, we submit transition-focused natural language inference based on DeBERTa with warmup training, and the same model without transition for the hard setup.","PeriodicalId":232729,"journal":{"name":"Conference and Labs of the Evaluation Forum","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference and Labs of the Evaluation Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.14913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The task of multi-author writing style detection aims at finding any positions of writing style change in a given text document. We formulate the task as a natural language inference problem where two consecutive paragraphs are paired. Our approach focuses on transitions between paragraphs while truncating input tokens for the task. As backbone models, we employ different Transformer-based encoders with warmup phase during training. We submit the model version that outperforms baselines and other proposed model versions in our experiments. For the easy and medium setups, we submit transition-focused natural language inference based on DeBERTa with warmup training, and the same model without transition for the hard setup.
基于过渡的自然语言推理写作风格检测
多作者写作风格检测任务的目的是发现给定文本文档中写作风格变化的任何位置。我们将任务表述为一个自然语言推理问题,其中两个连续的段落是成对的。我们的方法侧重于段落之间的转换,同时截断任务的输入标记。作为骨干模型,我们在训练中使用了不同的基于transformer的编码器,并进行了热身阶段。我们在实验中提交了优于基线和其他提出的模型版本的模型版本。对于简单和中等的设置,我们提交了基于DeBERTa的以过渡为中心的自然语言推理,并进行了热身训练,对于困难设置,我们提交了相同的模型,但没有过渡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信