Evaluating the Scalability of Matrix Factorization and Neighborhood Based Recommender Systems

Nikita Taneja, H. Thakur
{"title":"Evaluating the Scalability of Matrix Factorization and Neighborhood Based Recommender Systems","authors":"Nikita Taneja, H. Thakur","doi":"10.5815/ijitcs.2023.01.03","DOIUrl":null,"url":null,"abstract":"Recommendation Systems are everywhere, from offline shopping malls to major e-commerce websites, all use recommendation systems to enhance customer experience and grow profit. With a growing customer base, the requirement to store their interest, behavior and respond accordingly requires plenty of scalability. Thus, it is very important for companies to select a scalable recommender system, which can provide the recommendations not just accurately but with low latency as well. This paper focuses on the comparison between the four methods KMeans, KNN, SVD, and SVD++ to find out the better algorithm in terms of scalability. We have analyzed the methods on different parameters i.e., Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Precision, Recall and Running Time (Scalability). Results are elaborated such that selection becomes quite easy depending upon the user requirements.","PeriodicalId":130361,"journal":{"name":"International Journal of Information Technology and Computer Science","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijitcs.2023.01.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recommendation Systems are everywhere, from offline shopping malls to major e-commerce websites, all use recommendation systems to enhance customer experience and grow profit. With a growing customer base, the requirement to store their interest, behavior and respond accordingly requires plenty of scalability. Thus, it is very important for companies to select a scalable recommender system, which can provide the recommendations not just accurately but with low latency as well. This paper focuses on the comparison between the four methods KMeans, KNN, SVD, and SVD++ to find out the better algorithm in terms of scalability. We have analyzed the methods on different parameters i.e., Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Precision, Recall and Running Time (Scalability). Results are elaborated such that selection becomes quite easy depending upon the user requirements.
基于矩阵分解和邻域的推荐系统的可扩展性评价
推荐系统无处不在,从线下购物中心到大型电子商务网站,都使用推荐系统来提升客户体验和增加利润。随着客户群的增长,需要存储他们的兴趣、行为和相应的响应,这需要大量的可扩展性。因此,对于公司来说,选择一个可扩展的推荐系统是非常重要的,它不仅可以准确地提供推荐,而且延迟也很低。本文重点对KMeans、KNN、SVD和svd++四种方法进行比较,找出在可扩展性方面更好的算法。我们分析了不同参数的方法,即均方根误差(RMSE),平均绝对误差(MAE),精度,召回率和运行时间(可扩展性)。结果详细说明,选择变得相当容易,取决于用户的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信