An EM Technique for Multiple Transmitter Localization

J. Nelson, M. Gupta
{"title":"An EM Technique for Multiple Transmitter Localization","authors":"J. Nelson, M. Gupta","doi":"10.1109/CISS.2007.4298380","DOIUrl":null,"url":null,"abstract":"We propose an expectation-maximization (EM) technique for locating multiple transmitters based on power levels observed by a set of arbitrarily-placed receivers. Multiple transmitter localization is of interest for uncoordinated cognitive radio systems, which must identify and transmit over unused radio spectrum without cooperation from conventional transmitters. We employ the EM algorithm to reduce the dimensionality of the maximum-likelihood estimation problem. Because the EM algorithm finds only a locally optimal solution, we explore the use of clustering to generate \"smart\" initial estimates of the transmitter locations. Simulation results show that, as the number of sensors increases, the proposed EM technique achieves gains of up to an order of magnitude over constricted particle swarm optimization, a popular global optimization technique.","PeriodicalId":151241,"journal":{"name":"2007 41st Annual Conference on Information Sciences and Systems","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 41st Annual Conference on Information Sciences and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2007.4298380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

We propose an expectation-maximization (EM) technique for locating multiple transmitters based on power levels observed by a set of arbitrarily-placed receivers. Multiple transmitter localization is of interest for uncoordinated cognitive radio systems, which must identify and transmit over unused radio spectrum without cooperation from conventional transmitters. We employ the EM algorithm to reduce the dimensionality of the maximum-likelihood estimation problem. Because the EM algorithm finds only a locally optimal solution, we explore the use of clustering to generate "smart" initial estimates of the transmitter locations. Simulation results show that, as the number of sensors increases, the proposed EM technique achieves gains of up to an order of magnitude over constricted particle swarm optimization, a popular global optimization technique.
一种多发射机定位的电磁技术
我们提出了一种期望最大化(EM)技术,用于根据一组任意放置的接收器观察到的功率水平定位多个发射机。多发射机定位是对非协调认知无线电系统的兴趣,它必须在没有传统发射机合作的情况下识别和传输未使用的无线电频谱。我们使用EM算法来降低最大似然估计问题的维数。由于EM算法只能找到一个局部最优解,因此我们探索使用聚类来生成发射机位置的“智能”初始估计。仿真结果表明,随着传感器数量的增加,所提出的EM技术比收缩粒子群优化(一种流行的全局优化技术)获得了高达一个数量级的增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信