Improving the threshold performance of higher-order direction finding methods via pseudorandomly generated estimator banks

A. Gershman, J. Bohme
{"title":"Improving the threshold performance of higher-order direction finding methods via pseudorandomly generated estimator banks","authors":"A. Gershman, J. Bohme","doi":"10.1109/HOST.1997.613532","DOIUrl":null,"url":null,"abstract":"A recently reported estimator bank approach (see IEEE SP Lett., vol.4, p.54, 1997) is extended below to the fourth-order direction finding algorithms. The essence of our approach is to exploit \"parallel\" underlying eigenstructure based estimators for removing the outliers and improving the direction finding performance in the threshold domain. The pseudorandomly generated weighted fourth-order MUSIC estimators are exploited as underlying techniques for estimator bank. Motivated by the superior performance and reduced computational complexity of beamspace and root modifications of the second-order eigenstructure techniques, beamspace root implementations of fourth-order MUSIC and fourth-order estimator bank are developed. Simulations show dramatical improvements of the threshold performance.","PeriodicalId":305928,"journal":{"name":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1997.613532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A recently reported estimator bank approach (see IEEE SP Lett., vol.4, p.54, 1997) is extended below to the fourth-order direction finding algorithms. The essence of our approach is to exploit "parallel" underlying eigenstructure based estimators for removing the outliers and improving the direction finding performance in the threshold domain. The pseudorandomly generated weighted fourth-order MUSIC estimators are exploited as underlying techniques for estimator bank. Motivated by the superior performance and reduced computational complexity of beamspace and root modifications of the second-order eigenstructure techniques, beamspace root implementations of fourth-order MUSIC and fourth-order estimator bank are developed. Simulations show dramatical improvements of the threshold performance.
利用伪随机估计量库改进高阶测向方法的阈值性能
最近报道的估算器库方法(参见IEEE SP Lett)。, vol.4, p.54, 1997)在下面扩展到四阶测向算法。我们的方法的本质是利用“并行”基于底层特征结构的估计器来去除异常值并提高阈值域中的测向性能。利用伪随机生成的加权四阶MUSIC估计量作为估计库的基础技术。由于二阶特征结构技术的波束空间和根修改具有优越的性能和较低的计算复杂度,因此开发了四阶MUSIC的波束空间根实现和四阶估计器库。仿真结果表明,阈值性能得到了显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信