Kalman filtering based on the maximum correntropy criterion in the presence of non-Gaussian noise

Reza Izanloo, S. Fakoorian, H. Yazdi, D. Simon
{"title":"Kalman filtering based on the maximum correntropy criterion in the presence of non-Gaussian noise","authors":"Reza Izanloo, S. Fakoorian, H. Yazdi, D. Simon","doi":"10.1109/CISS.2016.7460553","DOIUrl":null,"url":null,"abstract":"State estimation in the presence of non-Gaussian noise is discussed. Since the Kalman filter uses only second-order signal information, it is not optimal in non-Gaussian noise environments. The maximum correntropy criterion (MCC) is a new approach to measure the similarity of two random variables using information from higher-order signal statistics. The correntropy filter (C-Filter) uses the MCC for state estimation. In this paper we first improve the performance of the C-Filter by modifying its derivation to obtain the modified correntropy filter (MC-Filter). Next we use the MCC and weighted least squares (WLS) to propose an MCC filter in Kalman filter form, which we call the MCC-KF. Simulation results show the superiority of the MCC-KF compared with the C-Filter, the MC-Filter, the unscented Kalman filter, the ensemble Kalman filter, and the Gaussian sum filter, in the presence of two different types of non-Gaussian disturbances (shot noise and Gaussian mixture noise).","PeriodicalId":346776,"journal":{"name":"2016 Annual Conference on Information Science and Systems (CISS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"156","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Annual Conference on Information Science and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2016.7460553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 156

Abstract

State estimation in the presence of non-Gaussian noise is discussed. Since the Kalman filter uses only second-order signal information, it is not optimal in non-Gaussian noise environments. The maximum correntropy criterion (MCC) is a new approach to measure the similarity of two random variables using information from higher-order signal statistics. The correntropy filter (C-Filter) uses the MCC for state estimation. In this paper we first improve the performance of the C-Filter by modifying its derivation to obtain the modified correntropy filter (MC-Filter). Next we use the MCC and weighted least squares (WLS) to propose an MCC filter in Kalman filter form, which we call the MCC-KF. Simulation results show the superiority of the MCC-KF compared with the C-Filter, the MC-Filter, the unscented Kalman filter, the ensemble Kalman filter, and the Gaussian sum filter, in the presence of two different types of non-Gaussian disturbances (shot noise and Gaussian mixture noise).
非高斯噪声存在下基于最大熵准则的卡尔曼滤波
讨论了非高斯噪声存在下的状态估计问题。由于卡尔曼滤波器仅使用二阶信号信息,因此在非高斯噪声环境下不是最优的。最大相关系数准则是一种利用高阶信号统计信息来度量两个随机变量相似性的新方法。相关滤波器(C-Filter)使用MCC进行状态估计。本文首先通过修改C-Filter的导数来提高C-Filter的性能,得到改进的熵系数滤波器(MC-Filter)。接下来,我们利用MCC和加权最小二乘(WLS)提出了一种卡尔曼滤波器形式的MCC滤波器,我们称之为MCC- kf。仿真结果表明,在两种不同类型的非高斯干扰(散粒噪声和高斯混合噪声)存在的情况下,MCC-KF与C-Filter、MC-Filter、unscented卡尔曼滤波器、集合卡尔曼滤波器和高斯求和滤波器相比具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信