Supervise Learning With Copulas

Xiaoping Shen, R. Ewing, Jia Li
{"title":"Supervise Learning With Copulas","authors":"Xiaoping Shen, R. Ewing, Jia Li","doi":"10.1109/NAECON46414.2019.9058051","DOIUrl":null,"url":null,"abstract":"The naïve Bayes classifier plays an important role among the classifiers based on supervised learning, although it requires strong condition on the feature independence assumptions. A measurement for the independency checking in the data preprocessing is necessary to guarantee the effectiveness of the classifier. Copula Theory is a mathematical tool in dependency modeling. In this paper, we recall elements of copulas and introduce a new algorithm to construct multiscale copula estimators which can be used for the independency testing to improve the accuracy of the Naïve Bayes classifier.","PeriodicalId":193529,"journal":{"name":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON46414.2019.9058051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The naïve Bayes classifier plays an important role among the classifiers based on supervised learning, although it requires strong condition on the feature independence assumptions. A measurement for the independency checking in the data preprocessing is necessary to guarantee the effectiveness of the classifier. Copula Theory is a mathematical tool in dependency modeling. In this paper, we recall elements of copulas and introduce a new algorithm to construct multiscale copula estimators which can be used for the independency testing to improve the accuracy of the Naïve Bayes classifier.
用copula监督学习
naïve贝叶斯分类器在基于监督学习的分类器中扮演着重要的角色,尽管它对特征独立性假设有很强的条件要求。为了保证分类器的有效性,必须对数据预处理中的独立性检验进行度量。Copula理论是依赖关系建模中的一个数学工具。在本文中,我们召回了copula的元素,并引入了一种新的算法来构造多尺度copula估计量,该估计量可用于独立性检验,以提高Naïve贝叶斯分类器的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信