Mixed signal neural circuits for shortest path computation

N. Shaikh-Husin, J. Meador
{"title":"Mixed signal neural circuits for shortest path computation","authors":"N. Shaikh-Husin, J. Meador","doi":"10.1109/ACSSC.1995.540825","DOIUrl":null,"url":null,"abstract":"The objective of the graphical shortest path problem is to discover the least cost path in a weighted graph between a given source vertex and one or more destinations. This problem class has numerous practical applications including data network routing and speech recognition. This paper discusses the hardware realization of a recurrent spatiotemporal neural network for single source multiple-destination graphical shortest path problems. The network exhibits a regular interconnect structure and uses simple processing units in a combination which is well suited for VLSI implementation with a standard fabrication process.","PeriodicalId":171264,"journal":{"name":"Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1995.540825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The objective of the graphical shortest path problem is to discover the least cost path in a weighted graph between a given source vertex and one or more destinations. This problem class has numerous practical applications including data network routing and speech recognition. This paper discusses the hardware realization of a recurrent spatiotemporal neural network for single source multiple-destination graphical shortest path problems. The network exhibits a regular interconnect structure and uses simple processing units in a combination which is well suited for VLSI implementation with a standard fabrication process.
用于最短路径计算的混合信号神经电路
图最短路径问题的目标是在给定的源顶点和一个或多个目的地之间找到加权图中代价最小的路径。这个问题类有许多实际应用,包括数据网络路由和语音识别。本文讨论了用于单源多目标图形化最短路径问题的递归时空神经网络的硬件实现。该网络具有规则的互连结构,并使用简单的处理单元组合,非常适合具有标准制造工艺的VLSI实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信