An artificial neural network for optimizing safety and quality in thermal food processing

D. Kseibat, O. Basir, G. Mittal
{"title":"An artificial neural network for optimizing safety and quality in thermal food processing","authors":"D. Kseibat, O. Basir, G. Mittal","doi":"10.1109/ISIC.1999.796687","DOIUrl":null,"url":null,"abstract":"Presents a backpropagation artificial neural network for optimizing food safety and quality in thermal processing applications. Five inputs (can size, initial temperature, thermal diffusivity, sensitivity indicator of microorganism, and sensitivity indicator of quality) are used as inputs to the network. The network computes the optimal control parameters (sterilization temperature, process time) and quality degradation of the food. This study is based on a wide range of microorganisms involved in foods.","PeriodicalId":300130,"journal":{"name":"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1999.796687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Presents a backpropagation artificial neural network for optimizing food safety and quality in thermal processing applications. Five inputs (can size, initial temperature, thermal diffusivity, sensitivity indicator of microorganism, and sensitivity indicator of quality) are used as inputs to the network. The network computes the optimal control parameters (sterilization temperature, process time) and quality degradation of the food. This study is based on a wide range of microorganisms involved in foods.
食品热加工安全质量优化的人工神经网络
提出了一种用于热加工食品安全质量优化的反向传播人工神经网络。网络使用5个输入(罐大小、初始温度、热扩散系数、微生物敏感性指标和质量敏感性指标)作为输入。该网络计算出食品的最佳控制参数(灭菌温度、加工时间)和质量退化。这项研究是基于食品中涉及的广泛的微生物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信