Daniel Dworak, Filip Ciepiela, Jakub Derbisz, I. Izzat, M. Komorkiewicz, M. Wójcik
{"title":"Performance of LiDAR object detection deep learning architectures based on artificially generated point cloud data from CARLA simulator","authors":"Daniel Dworak, Filip Ciepiela, Jakub Derbisz, I. Izzat, M. Komorkiewicz, M. Wójcik","doi":"10.1109/MMAR.2019.8864642","DOIUrl":null,"url":null,"abstract":"Training deep neural network algorithms for LiDAR based object detection for autonomous cars requires huge amount of labeled data. Both data collection and labeling requires a lot of effort, money and time. Therefore, the use of simulation software for virtual data generation environments is gaining wide interest from both researchers and engineers. The big question remains how well artificially generated data resembles the data gathered by real sensors and how the differences affects the final algorithms performance. The article is trying to make a quantitative answer to the above question. Selected state-of-the-art algorithms for LiDAR point cloud object detection were trained on both real and artificially generated data sets. Their performance on different test sets were evaluated. The main focus was to determinate how well artificially trained networks perform on real data and if combined train sets can achieve better results overall.","PeriodicalId":392498,"journal":{"name":"2019 24th International Conference on Methods and Models in Automation and Robotics (MMAR)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 24th International Conference on Methods and Models in Automation and Robotics (MMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2019.8864642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Training deep neural network algorithms for LiDAR based object detection for autonomous cars requires huge amount of labeled data. Both data collection and labeling requires a lot of effort, money and time. Therefore, the use of simulation software for virtual data generation environments is gaining wide interest from both researchers and engineers. The big question remains how well artificially generated data resembles the data gathered by real sensors and how the differences affects the final algorithms performance. The article is trying to make a quantitative answer to the above question. Selected state-of-the-art algorithms for LiDAR point cloud object detection were trained on both real and artificially generated data sets. Their performance on different test sets were evaluated. The main focus was to determinate how well artificially trained networks perform on real data and if combined train sets can achieve better results overall.