On the inefficacy of Euclidean classifiers for detecting self-similar Session Initiation Protocol (SIP) messages

Anil Mehta, Neda Hantehzadeh, V. Gurbani, T. Ho, Jun Koshiko, R. Viswanathan
{"title":"On the inefficacy of Euclidean classifiers for detecting self-similar Session Initiation Protocol (SIP) messages","authors":"Anil Mehta, Neda Hantehzadeh, V. Gurbani, T. Ho, Jun Koshiko, R. Viswanathan","doi":"10.1109/INM.2011.5990708","DOIUrl":null,"url":null,"abstract":"The Session Initiation Protocol (SIP) is an important multimedia session establishment protocol used on the Internet. Due to the nature and deployment realities of the protocol (ASCII message representation, most deployments over UDP, limited use of message encryption), it becomes relatively easy to attack the protocol at the message level. To mitigate this, self-learning systems have been proposed to counteract new threats. However the efficacy of existing machine learning algorithms must be studied on varied data sets before they can be successfully used. Existing literature indicates that Euclidean distance based classifiers work well to detect anomalous messages. Our work suggests that such classifiers do not produce adequate results for well-crafted malicious messages that differ very slightly from normal messages. To demonstrate this, we gather SIP traffic and minimally perturb it using 13 generic transforms to create malicious SIP messages. We use the Levenshtein distance, L, as a measure of similarity between normal and malicious SIP messages. We subject our dataset — consisting of malicious and normal SIP messages — to Euclidean distance-based classifiers as well as four standard classifiers. Our results show vast differences for Euclidean distance-based classifiers on our dataset than reported in current literature. We further see that the standard classifiers are better able to classify an anomalous message when L is small.","PeriodicalId":433520,"journal":{"name":"12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INM.2011.5990708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

The Session Initiation Protocol (SIP) is an important multimedia session establishment protocol used on the Internet. Due to the nature and deployment realities of the protocol (ASCII message representation, most deployments over UDP, limited use of message encryption), it becomes relatively easy to attack the protocol at the message level. To mitigate this, self-learning systems have been proposed to counteract new threats. However the efficacy of existing machine learning algorithms must be studied on varied data sets before they can be successfully used. Existing literature indicates that Euclidean distance based classifiers work well to detect anomalous messages. Our work suggests that such classifiers do not produce adequate results for well-crafted malicious messages that differ very slightly from normal messages. To demonstrate this, we gather SIP traffic and minimally perturb it using 13 generic transforms to create malicious SIP messages. We use the Levenshtein distance, L, as a measure of similarity between normal and malicious SIP messages. We subject our dataset — consisting of malicious and normal SIP messages — to Euclidean distance-based classifiers as well as four standard classifiers. Our results show vast differences for Euclidean distance-based classifiers on our dataset than reported in current literature. We further see that the standard classifiers are better able to classify an anomalous message when L is small.
欧几里得分类器检测自相似会话发起协议(SIP)消息的有效性
SIP (Session Initiation Protocol)是Internet上一种重要的多媒体会话建立协议。由于协议的性质和部署现实(ASCII消息表示,大多数部署在UDP上,消息加密的有限使用),在消息级别攻击协议变得相对容易。为了缓解这种情况,人们提出了自我学习系统来应对新的威胁。然而,现有机器学习算法的有效性必须在不同的数据集上进行研究,然后才能成功使用。现有文献表明,基于欧几里得距离的分类器可以很好地检测异常信息。我们的工作表明,对于与正常消息略有不同的精心制作的恶意消息,这种分类器不能产生足够的结果。为了演示这一点,我们收集SIP流量,并使用13个通用转换来创建恶意SIP消息,从而对其进行最小程度的干扰。我们使用Levenshtein距离L作为正常和恶意SIP消息之间相似性的度量。我们将我们的数据集(包括恶意和正常的SIP消息)置于基于欧几里得距离的分类器以及四个标准分类器中。我们的结果显示,在我们的数据集上,基于欧几里得距离的分类器与当前文献报道的分类器存在巨大差异。我们进一步看到,当L很小时,标准分类器能够更好地分类异常消息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信