Image segmentation by intelligent clustering technique

Subarna Sinha, S. Deb
{"title":"Image segmentation by intelligent clustering technique","authors":"Subarna Sinha, S. Deb","doi":"10.1109/RAICS.2013.6745486","DOIUrl":null,"url":null,"abstract":"Image segmentation based on clustering techniques still remains a challenging task. The aim of clustering is to generate homogeneous groups of data. In this paper, we present bio-inspired formulation to perform image segmentation. Specifically, we used the Bird flocking algorithm that uses the concepts of a flock of agents, e.g. birds moving together in a complex manner with simple local rules. Each bird representing one data, move with the aim of creating homogeneous groups of data in a two dimensional environment producing a spatial distribution that can be used to solve a particular computational problem. These characteristics have been used to solve the task of segmentation of images which optimize the partition of image data into homogenous regions.","PeriodicalId":184155,"journal":{"name":"2013 IEEE Recent Advances in Intelligent Computational Systems (RAICS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Recent Advances in Intelligent Computational Systems (RAICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAICS.2013.6745486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Image segmentation based on clustering techniques still remains a challenging task. The aim of clustering is to generate homogeneous groups of data. In this paper, we present bio-inspired formulation to perform image segmentation. Specifically, we used the Bird flocking algorithm that uses the concepts of a flock of agents, e.g. birds moving together in a complex manner with simple local rules. Each bird representing one data, move with the aim of creating homogeneous groups of data in a two dimensional environment producing a spatial distribution that can be used to solve a particular computational problem. These characteristics have been used to solve the task of segmentation of images which optimize the partition of image data into homogenous regions.
基于智能聚类技术的图像分割
基于聚类技术的图像分割仍然是一个具有挑战性的任务。聚类的目的是生成同构的数据组。在本文中,我们提出了仿生配方来执行图像分割。具体来说,我们使用了Bird flocking算法,该算法使用了一群代理的概念,例如,鸟类以简单的局部规则以复杂的方式一起移动。每只鸟代表一个数据,移动的目的是在二维环境中创建同质的数据组,产生可用于解决特定计算问题的空间分布。这些特征已被用于解决图像分割任务,即优化图像数据划分为均匀区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信