Complexity evaluation of implementing the Support Vector Machine algorithm on mobile computing platforms

Daniel Armanda, Alin-Gabriel Cococi, R. Dogaru
{"title":"Complexity evaluation of implementing the Support Vector Machine algorithm on mobile computing platforms","authors":"Daniel Armanda, Alin-Gabriel Cococi, R. Dogaru","doi":"10.1109/ISEEE.2017.8170701","DOIUrl":null,"url":null,"abstract":"SVM (Support Vector Machine), a state of the art classifier model is implemented on a computational mobile platform and its performances are evaluated against a low complexity classifier such as SFSVC (Super Fast Vector Support Classifier) on the same platform. For a better comparison, similar implementation for the two architectures are considered, such as using the same basic linear algebra library. Similar performances are obtained, but with the mention that the SFSVC algorithm has a more compact structure.","PeriodicalId":276733,"journal":{"name":"2017 5th International Symposium on Electrical and Electronics Engineering (ISEEE)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Symposium on Electrical and Electronics Engineering (ISEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEEE.2017.8170701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

SVM (Support Vector Machine), a state of the art classifier model is implemented on a computational mobile platform and its performances are evaluated against a low complexity classifier such as SFSVC (Super Fast Vector Support Classifier) on the same platform. For a better comparison, similar implementation for the two architectures are considered, such as using the same basic linear algebra library. Similar performances are obtained, but with the mention that the SFSVC algorithm has a more compact structure.
支持向量机算法在移动计算平台上的复杂度评估
支持向量机(SVM)是一种最先进的分类器模型,在计算移动平台上实现,并在同一平台上与SFSVC(超快速向量支持分类器)等低复杂度分类器进行性能评估。为了更好地进行比较,我们考虑了两种体系结构的类似实现,例如使用相同的基本线性代数库。获得了类似的性能,但提到SFSVC算法具有更紧凑的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信