Biomimetic hybrid feedback feedforword adaptive neural control of robotic arms

Yongping Pan, Haoyong Yu
{"title":"Biomimetic hybrid feedback feedforword adaptive neural control of robotic arms","authors":"Yongping Pan, Haoyong Yu","doi":"10.1109/CICA.2014.7013254","DOIUrl":null,"url":null,"abstract":"This paper presents a biomimetic hybrid feedback feedforword (HFF) adaptive neural control for a class of robotic arms. The control structure includes a proportional-derivative feedback term and an adaptive neural network (NN) feedforword term, which mimics the human motor learning and control mechanism. Semiglobal asymptotic stability of the closed-loop system is established by the Lyapunov synthesis. The major difference of the proposed design from the traditional feedback adaptive approximation-based control (AAC) design is that only desired outputs, rather than both tracking errors and desired outputs, are applied as NN inputs. Such a slight difference leads to several attractive properties, including the convenient NN design, the decrease of the number of NN inputs, and semiglobal asymptotic stability dominated by control gains. Compared with previous HFF-AAC approaches, the proposed approach has two unique features: 1) all above attractive properties are achieved by a much simpler control scheme; 2) the bounds of plant uncertainties are not required to be known. Simulation results have verified the effectiveness and superiority of this approach.","PeriodicalId":340740,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICA.2014.7013254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper presents a biomimetic hybrid feedback feedforword (HFF) adaptive neural control for a class of robotic arms. The control structure includes a proportional-derivative feedback term and an adaptive neural network (NN) feedforword term, which mimics the human motor learning and control mechanism. Semiglobal asymptotic stability of the closed-loop system is established by the Lyapunov synthesis. The major difference of the proposed design from the traditional feedback adaptive approximation-based control (AAC) design is that only desired outputs, rather than both tracking errors and desired outputs, are applied as NN inputs. Such a slight difference leads to several attractive properties, including the convenient NN design, the decrease of the number of NN inputs, and semiglobal asymptotic stability dominated by control gains. Compared with previous HFF-AAC approaches, the proposed approach has two unique features: 1) all above attractive properties are achieved by a much simpler control scheme; 2) the bounds of plant uncertainties are not required to be known. Simulation results have verified the effectiveness and superiority of this approach.
机械臂仿生混合反馈前馈自适应神经控制
针对一类机械臂,提出了一种仿生混合反馈前馈自适应神经控制方法。该控制结构包括一个比例导数反馈项和一个自适应神经网络前馈项,模拟人类运动学习和控制机制。利用Lyapunov综合建立了闭环系统的半全局渐近稳定性。该设计与传统的基于反馈自适应近似的控制(AAC)设计的主要区别在于,只有期望输出,而不是同时使用跟踪误差和期望输出作为神经网络输入。这种微小的差异带来了几个吸引人的特性,包括方便的神经网络设计,减少了神经网络输入的数量,以及由控制增益主导的半全局渐近稳定性。与以往的HFF-AAC方法相比,该方法具有两个独特的特点:1)通过更简单的控制方案实现上述所有吸引人的特性;2)植物不确定性的界限不需要已知。仿真结果验证了该方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信