Sparse approximations for joint source-channel coding

G. Rath, C. Guillemot, J. Fuchs
{"title":"Sparse approximations for joint source-channel coding","authors":"G. Rath, C. Guillemot, J. Fuchs","doi":"10.1109/MMSP.2008.4665126","DOIUrl":null,"url":null,"abstract":"This paper considers the application of sparse approximations in a joint source-channel (JSC) coding framework. The considered JSC coded system employs a real number BCH code on the input signal before the signal is quantized and further processed. Under an impulse channel noise model, the decoding of error is posed as a sparse approximation problem. The orthogonal matching pursuit (OMP) and basis pursuit (BP) algorithms are compared with the syndrome decoding algorithm in terms of mean square reconstruction error. It is seen that, with a Gauss-Markov source and Bernoulli-Gaussian channel noise, the BP outperforms the syndrome decoding and the OMP at higher noise levels. In the case of image transmission with channel bit errors, the BP outperforms the other two decoding algorithms consistently.","PeriodicalId":402287,"journal":{"name":"2008 IEEE 10th Workshop on Multimedia Signal Processing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 10th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2008.4665126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper considers the application of sparse approximations in a joint source-channel (JSC) coding framework. The considered JSC coded system employs a real number BCH code on the input signal before the signal is quantized and further processed. Under an impulse channel noise model, the decoding of error is posed as a sparse approximation problem. The orthogonal matching pursuit (OMP) and basis pursuit (BP) algorithms are compared with the syndrome decoding algorithm in terms of mean square reconstruction error. It is seen that, with a Gauss-Markov source and Bernoulli-Gaussian channel noise, the BP outperforms the syndrome decoding and the OMP at higher noise levels. In the case of image transmission with channel bit errors, the BP outperforms the other two decoding algorithms consistently.
联合信源信道编码的稀疏逼近
本文研究了稀疏逼近在联合信源信道编码框架中的应用。所考虑的JSC编码系统在对信号进行量化和进一步处理之前,对输入信号采用实数BCH码。在脉冲信道噪声模型下,误差的解码是一个稀疏逼近问题。在均方重构误差方面,将正交匹配追踪(OMP)和基追踪(BP)算法与综合征解码算法进行了比较。可以看出,在具有高斯-马尔可夫源和伯努利-高斯信道噪声的情况下,BP在更高噪声水平下优于综合征解码和OMP。在有信道误码的图像传输情况下,BP算法始终优于其他两种译码算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信