Summarizing video using non-negative similarity matrix factorization

Matthew L. Cooper, J. Foote
{"title":"Summarizing video using non-negative similarity matrix factorization","authors":"Matthew L. Cooper, J. Foote","doi":"10.1109/MMSP.2002.1203239","DOIUrl":null,"url":null,"abstract":"We present a novel approach to automatically extracting summary excerpts from audio video and video. Our approach is to maximize the average similarity between the excerpt and the source. We first calculate a similarity matrix by comparing each pair of time samples using a quantitative similarity measure. To determine the segment with highest average similarity, we maximize the summation of the self-similarity matrix over the support of the segment. To select multiple excerpts while avoiding redundancy, we compute the non-negative matrix factorization (NMF) of the similarity matrix into its essential structural components. We then build a summary comprised of excerpts from the main components, selecting the excerpts for maximum average similarity within each component. Variations integrating segmentation and other information are also discussed, and experimental results are presented.","PeriodicalId":398813,"journal":{"name":"2002 IEEE Workshop on Multimedia Signal Processing.","volume":"237 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"120","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE Workshop on Multimedia Signal Processing.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2002.1203239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 120

Abstract

We present a novel approach to automatically extracting summary excerpts from audio video and video. Our approach is to maximize the average similarity between the excerpt and the source. We first calculate a similarity matrix by comparing each pair of time samples using a quantitative similarity measure. To determine the segment with highest average similarity, we maximize the summation of the self-similarity matrix over the support of the segment. To select multiple excerpts while avoiding redundancy, we compute the non-negative matrix factorization (NMF) of the similarity matrix into its essential structural components. We then build a summary comprised of excerpts from the main components, selecting the excerpts for maximum average similarity within each component. Variations integrating segmentation and other information are also discussed, and experimental results are presented.
利用非负相似矩阵分解对视频进行总结
提出了一种从音频、视频和视频中自动提取摘要摘要的新方法。我们的方法是最大化摘录和来源之间的平均相似度。我们首先通过使用定量相似性度量比较每对时间样本来计算相似性矩阵。为了确定具有最高平均相似度的段,我们在段的支持上最大化自相似矩阵的总和。为了在选择多个摘录的同时避免冗余,我们将相似矩阵的非负矩阵分解(NMF)计算为其基本结构分量。然后,我们构建一个由主要组件的摘录组成的摘要,选择每个组件中具有最大平均相似度的摘录。讨论了结合分割和其他信息的变化,并给出了实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信