An Information Theoretic Approach to Computer Simulation Sensitivity Analysis

J. Molle, D. Morrice
{"title":"An Information Theoretic Approach to Computer Simulation Sensitivity Analysis","authors":"J. Molle, D. Morrice","doi":"10.1109/WSC.1993.718078","DOIUrl":null,"url":null,"abstract":"In this paper, statistical information theory-based procedures are applied to sensitivity analysis in computer simulation. Information theory, through use of the conditional entropy functional, provides a non- parametric approach to qualitatively assessing the sensitivity of the distributional relationships of the input and output processes of a simulation model. Since the conditional entropy functional quantifies the amount of uncertainty in the distribution of a set of random variables, it can be used as the basis for a methodology to assess the relative strengths of the statistical dependencies among the input/output processes. The application of information theory in this paper focuses on assessing the uncertainty in the simulation output processes attributable to the simulation input processes. This approach to sensitivity analysis is illustrated by an example.","PeriodicalId":177234,"journal":{"name":"Proceedings of 1993 Winter Simulation Conference - (WSC '93)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1993 Winter Simulation Conference - (WSC '93)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.1993.718078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, statistical information theory-based procedures are applied to sensitivity analysis in computer simulation. Information theory, through use of the conditional entropy functional, provides a non- parametric approach to qualitatively assessing the sensitivity of the distributional relationships of the input and output processes of a simulation model. Since the conditional entropy functional quantifies the amount of uncertainty in the distribution of a set of random variables, it can be used as the basis for a methodology to assess the relative strengths of the statistical dependencies among the input/output processes. The application of information theory in this paper focuses on assessing the uncertainty in the simulation output processes attributable to the simulation input processes. This approach to sensitivity analysis is illustrated by an example.
计算机仿真灵敏度分析的信息论方法
本文将基于统计信息理论的方法应用于计算机仿真中的灵敏度分析。信息论,通过使用条件熵函数,提供了一种非参数的方法来定性地评估模拟模型的输入和输出过程的分布关系的敏感性。由于条件熵函数量化了一组随机变量分布中的不确定性,因此它可以作为评估输入/输出过程之间统计依赖性相对强度的方法的基础。本文将信息论应用于评估仿真输出过程中由于仿真输入过程而产生的不确定性。通过一个实例说明了这种敏感性分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信