Solving fuzzy relational equations by max-min neural networks

A. Blanco, M. Delgado, I. Requena
{"title":"Solving fuzzy relational equations by max-min neural networks","authors":"A. Blanco, M. Delgado, I. Requena","doi":"10.1109/FUZZY.1994.343594","DOIUrl":null,"url":null,"abstract":"The problem of identifying a fuzzy system has been faced from several points of view which include statistical methods, neural networks and relational equation-solving approaches. In this paper, we present the use of a neural network without any activation function in order to identify a fuzzy system through the solution of a fuzzy relational equation from a set of examples. The main contribution of this work is to define a \"smooth derivative\" to be used in the minimization of the energy function which drives the learning procedure. Some examples show the effectiveness of this new approach.<<ETX>>","PeriodicalId":153967,"journal":{"name":"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1994.343594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

The problem of identifying a fuzzy system has been faced from several points of view which include statistical methods, neural networks and relational equation-solving approaches. In this paper, we present the use of a neural network without any activation function in order to identify a fuzzy system through the solution of a fuzzy relational equation from a set of examples. The main contribution of this work is to define a "smooth derivative" to be used in the minimization of the energy function which drives the learning procedure. Some examples show the effectiveness of this new approach.<>
用最大最小神经网络求解模糊关系方程
从统计方法、神经网络方法和关系方程求解方法等方面研究了模糊系统的识别问题。在本文中,我们提出了一种不带任何激活函数的神经网络,通过从一组例子中求解模糊关系方程来识别模糊系统。这项工作的主要贡献是定义了一个“平滑导数”,用于最小化驱动学习过程的能量函数。一些例子表明了这种新方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信