Parkinson sEMG signal prediction and generation with Neural Networks

R. A. Zanini, E. Colombini
{"title":"Parkinson sEMG signal prediction and generation with Neural Networks","authors":"R. A. Zanini, E. Colombini","doi":"10.5753/SBCAS.2021.16102","DOIUrl":null,"url":null,"abstract":"Parkinson’s Disease (PD) is a neurodegenerative disorder characterized by symptoms like resting and action tremors, which cause severe impairments to the patient’s life. Recently, many assistance techniques have been proposed to minimize the disease’s impact on patients’ life. However, most of these methods depend on data from PD’s surface electromyography (sEMG), which is scarce. In this work, we propose the first methods, based on Neural Networks, for predicting, generating, and transferring the style of patient-specific PD sEMG tremor signals. This dissertation contributes to the area by i) comparing different NN models for predicting PD sEMG signals to anticipate resting tremor patterns ii) proposing the first approach based on Deep Convolutional Generative Adversarial Networks (DCGANs) to generate PD’s sEMG tremor signals; iii) applying Style Transfer (ST) for augmenting PD’s sEMG signals with publicly available datasets of non-PD subjects; iv) proposing metrics for evaluating the PD’s signal characterization in sEMG signals. These new data created by our methods could validate treatment approaches on different movement scenarios, contributing to the development of new techniques for tremor suppression in patients.","PeriodicalId":236085,"journal":{"name":"Anais do XXXIV Concurso de Teses e Dissertações da SBC (CTD-SBC 2021)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXXIV Concurso de Teses e Dissertações da SBC (CTD-SBC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/SBCAS.2021.16102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Parkinson’s Disease (PD) is a neurodegenerative disorder characterized by symptoms like resting and action tremors, which cause severe impairments to the patient’s life. Recently, many assistance techniques have been proposed to minimize the disease’s impact on patients’ life. However, most of these methods depend on data from PD’s surface electromyography (sEMG), which is scarce. In this work, we propose the first methods, based on Neural Networks, for predicting, generating, and transferring the style of patient-specific PD sEMG tremor signals. This dissertation contributes to the area by i) comparing different NN models for predicting PD sEMG signals to anticipate resting tremor patterns ii) proposing the first approach based on Deep Convolutional Generative Adversarial Networks (DCGANs) to generate PD’s sEMG tremor signals; iii) applying Style Transfer (ST) for augmenting PD’s sEMG signals with publicly available datasets of non-PD subjects; iv) proposing metrics for evaluating the PD’s signal characterization in sEMG signals. These new data created by our methods could validate treatment approaches on different movement scenarios, contributing to the development of new techniques for tremor suppression in patients.
帕金森表面肌电信号的神经网络预测与生成
帕金森病(PD)是一种神经退行性疾病,其特征是静息性震颤和运动性震颤等症状,会对患者的生活造成严重损害。最近,许多辅助技术被提出,以尽量减少疾病对患者生活的影响。然而,这些方法大多依赖于PD的表面肌电图(sEMG)数据,这是稀缺的。在这项工作中,我们提出了第一种基于神经网络的方法,用于预测、生成和传输患者特异性PD肌电震颤信号的类型。本文通过比较不同的神经网络模型来预测PD表面肌电信号以预测静息震颤模式,提出了基于深度卷积生成对抗网络(dcgan)的第一种方法来生成PD表面肌电信号震颤信号;iii)应用风格转移(ST),利用非PD受试者的公开数据集增强PD的表面肌电信号;iv)提出评估表面肌电信号中PD信号特征的指标。通过我们的方法创建的这些新数据可以验证不同运动场景的治疗方法,有助于开发新的震颤抑制技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信