Discourse Representation Structure Parsing with Recurrent Neural Networks and the Transformer Model

Jiangming Liu, Shay B. Cohen, Mirella Lapata
{"title":"Discourse Representation Structure Parsing with Recurrent Neural Networks and the Transformer Model","authors":"Jiangming Liu, Shay B. Cohen, Mirella Lapata","doi":"10.18653/v1/W19-1203","DOIUrl":null,"url":null,"abstract":"We describe the systems we developed for Discourse Representation Structure (DRS) parsing as part of the IWCS-2019 Shared Task of DRS Parsing.1 Our systems are based on sequence-to-sequence modeling. To implement our model, we use the open-source neural machine translation system implemented in PyTorch, OpenNMT-py. We experimented with a variety of encoder-decoder models based on recurrent neural networks and the Transformer model. We conduct experiments on the standard benchmark of the Parallel Meaning Bank (PMB 2.2). Our best system achieves a score of 84.8% F1 in the DRS parsing shared task.","PeriodicalId":173384,"journal":{"name":"Proceedings of the IWCS Shared Task on Semantic Parsing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IWCS Shared Task on Semantic Parsing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-1203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We describe the systems we developed for Discourse Representation Structure (DRS) parsing as part of the IWCS-2019 Shared Task of DRS Parsing.1 Our systems are based on sequence-to-sequence modeling. To implement our model, we use the open-source neural machine translation system implemented in PyTorch, OpenNMT-py. We experimented with a variety of encoder-decoder models based on recurrent neural networks and the Transformer model. We conduct experiments on the standard benchmark of the Parallel Meaning Bank (PMB 2.2). Our best system achieves a score of 84.8% F1 in the DRS parsing shared task.
基于递归神经网络和Transformer模型的语篇表示结构分析
作为IWCS-2019 DRS解析共享任务的一部分,我们描述了我们为话语表示结构(DRS)解析开发的系统。1我们的系统基于序列到序列建模。为了实现我们的模型,我们使用了PyTorch中实现的开源神经机器翻译系统OpenNMT-py。我们实验了各种基于循环神经网络和Transformer模型的编码器-解码器模型。我们在平行意义库(PMB 2.2)的标准基准上进行了实验。我们最好的系统在DRS解析共享任务中获得了84.8% F1的分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信