Automatic man-made object detection with intensity cameras

A. Olmos, E. Trucco, D. Lane
{"title":"Automatic man-made object detection with intensity cameras","authors":"A. Olmos, E. Trucco, D. Lane","doi":"10.1109/OCEANS.2002.1191867","DOIUrl":null,"url":null,"abstract":"We present a system detecting the presence of man-made objects in unconstrained subsea videos. This presents a significant challenge because nothing is assumed about the possible orientation or location of the objects and because of the generally poor underwater image quality. Classification is based on contours, which are reasonably stable features in underwater imagery. First, the system determines automatically an optimal scale for contour extraction by optimising a quality metric. Second, a classifier determines whether the image contains man-made objects or not. The features used capture general properties of man-made structures using measures inspired by perceptual organisation. Using a Support Vector Machines (SVM) classifier the system classified correctly approximately 77% of the image-frames containing man-made objects belonging to five different underwater videos, in spite of the varying image contents, poor quality and generality of the classification task.","PeriodicalId":431594,"journal":{"name":"OCEANS '02 MTS/IEEE","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS '02 MTS/IEEE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.2002.1191867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We present a system detecting the presence of man-made objects in unconstrained subsea videos. This presents a significant challenge because nothing is assumed about the possible orientation or location of the objects and because of the generally poor underwater image quality. Classification is based on contours, which are reasonably stable features in underwater imagery. First, the system determines automatically an optimal scale for contour extraction by optimising a quality metric. Second, a classifier determines whether the image contains man-made objects or not. The features used capture general properties of man-made structures using measures inspired by perceptual organisation. Using a Support Vector Machines (SVM) classifier the system classified correctly approximately 77% of the image-frames containing man-made objects belonging to five different underwater videos, in spite of the varying image contents, poor quality and generality of the classification task.
使用强度相机自动检测人造物体
我们提出了一种在无约束水下视频中检测人造物体存在的系统。这提出了一个重大的挑战,因为没有假设可能的方向或位置的对象,因为普遍较差的水下图像质量。分类基于等高线,这是水下图像中相当稳定的特征。首先,系统通过优化质量度量自动确定轮廓提取的最佳尺度。其次,分类器确定图像是否包含人造物体。所使用的特征通过感知组织激发的措施捕获人造结构的一般属性。使用支持向量机(SVM)分类器,系统正确分类了大约77%的图像帧,其中包含属于五个不同的水下视频的人造物体,尽管图像内容不同,质量差,分类任务的普遍性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信