Efficiency of SSVEF Recognition from the Magnetoencephalogram - A Comparison of Spectral Feature Classification and CCA-based Prediction

C. Reichert, Matthias Kennel, R. Kruse, H. Hinrichs, J. Rieger
{"title":"Efficiency of SSVEF Recognition from the Magnetoencephalogram - A Comparison of Spectral Feature Classification and CCA-based Prediction","authors":"C. Reichert, Matthias Kennel, R. Kruse, H. Hinrichs, J. Rieger","doi":"10.5220/0004645602330237","DOIUrl":null,"url":null,"abstract":"Steady-state visual evoked potentials (SSVEP) are a popular method to control brain-computer interfaces (BCI). Here, we present a BCI for selection of virtual reality (VR) objects by decoding the steady-state vi- sual evoked fields (SSVEF), the magnetic analogue to the SSVEP in the magnetoencephalogram (MEG). In a conventional approach, we performed online prediction by Fourier transform (FT) in combination with a mul- tivariate classifier. As a comparative study, we report our approach to increase the BCI-system performance in an offline evaluation. Therefore, we transfered the canonical correlation analysis (CCA), originally employed to recognize relatively low dimensional SSVEPs in the electroencephalogram (EEG), to SSVEF recognition in higher dimensional MEG recordings. We directly compare the performance of both approaches and con- clude that CCA can greatly improve system performance in our MEG-based BCI-system. Moreover, we find that application of CCA to large multi-sensor MEG could provide an effective feature extraction method that automatically determines the sensors that are informative for the recognition of SSVEFs.","PeriodicalId":167011,"journal":{"name":"International Congress on Neurotechnology, Electronics and Informatics","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Congress on Neurotechnology, Electronics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0004645602330237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Steady-state visual evoked potentials (SSVEP) are a popular method to control brain-computer interfaces (BCI). Here, we present a BCI for selection of virtual reality (VR) objects by decoding the steady-state vi- sual evoked fields (SSVEF), the magnetic analogue to the SSVEP in the magnetoencephalogram (MEG). In a conventional approach, we performed online prediction by Fourier transform (FT) in combination with a mul- tivariate classifier. As a comparative study, we report our approach to increase the BCI-system performance in an offline evaluation. Therefore, we transfered the canonical correlation analysis (CCA), originally employed to recognize relatively low dimensional SSVEPs in the electroencephalogram (EEG), to SSVEF recognition in higher dimensional MEG recordings. We directly compare the performance of both approaches and con- clude that CCA can greatly improve system performance in our MEG-based BCI-system. Moreover, we find that application of CCA to large multi-sensor MEG could provide an effective feature extraction method that automatically determines the sensors that are informative for the recognition of SSVEFs.
脑磁图识别SSVEF的效率——光谱特征分类与基于ca的预测的比较
稳态视觉诱发电位(SSVEP)是一种常用的脑机接口控制方法。在这里,我们提出了一个脑机接口,通过解码稳态视觉诱发场(SSVEF)来选择虚拟现实(VR)对象,这是脑磁图(MEG)中SSVEP的磁性模拟物。在传统的方法中,我们通过傅立叶变换(FT)结合多变量分类器进行在线预测。作为一项比较研究,我们报告了我们在离线评估中提高bci系统性能的方法。因此,我们将典型相关分析(CCA),最初用于识别脑电图(EEG)中相对低维的ssvep,转移到高维MEG记录中的SSVEF识别。我们直接比较了这两种方法的性能,并得出结论,CCA可以极大地提高我们基于meg的bci系统的系统性能。此外,我们发现将CCA应用于大型多传感器MEG可以提供一种有效的特征提取方法,自动确定对ssvef识别有信息的传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信