Ning Lv, Yibin Rui, Liyan Wang, Huan Wang, Chenguang Bian
{"title":"Polynomial rotation-polynomial Fourier transform of ultrafast maneuvering targets detection","authors":"Ning Lv, Yibin Rui, Liyan Wang, Huan Wang, Chenguang Bian","doi":"10.1117/12.2557052","DOIUrl":null,"url":null,"abstract":"For coherent integration detection of ultrafast maneuvering targets with modern radar, a novel long-time coherent integration algorithm, Polynomial Rotation-Polynomial Fourier Transform (PRPFT), is proposed to compensate across range unit range walk (RW) and Doppler frequency migration (DFM) simultaneously caused by super-high speed and strong maneuvering. First, RW can be corrected by the polynomial rotation transform (PRT) via rotating the coordinate locations of echo data. Then, the polynomial Fourier transform (PFT) can realize the compensation of DFM and coherent integration. To reduce the computational complexity, one decision method is proposed to search the multidimensional parameter space. Finally, numerical experiments are provided to validate the effectiveness of the proposed method.","PeriodicalId":415097,"journal":{"name":"International Conference on Signal Processing Systems","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2557052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For coherent integration detection of ultrafast maneuvering targets with modern radar, a novel long-time coherent integration algorithm, Polynomial Rotation-Polynomial Fourier Transform (PRPFT), is proposed to compensate across range unit range walk (RW) and Doppler frequency migration (DFM) simultaneously caused by super-high speed and strong maneuvering. First, RW can be corrected by the polynomial rotation transform (PRT) via rotating the coordinate locations of echo data. Then, the polynomial Fourier transform (PFT) can realize the compensation of DFM and coherent integration. To reduce the computational complexity, one decision method is proposed to search the multidimensional parameter space. Finally, numerical experiments are provided to validate the effectiveness of the proposed method.