Deep Reinforcement Learning for Continuous Power Allocation in Flexible High Throughput Satellites

J. Luis, Markus Guerster, Iñigo Del Portillo, E. Crawley, B. Cameron
{"title":"Deep Reinforcement Learning for Continuous Power Allocation in Flexible High Throughput Satellites","authors":"J. Luis, Markus Guerster, Iñigo Del Portillo, E. Crawley, B. Cameron","doi":"10.1109/CCAAW.2019.8904901","DOIUrl":null,"url":null,"abstract":"Many of the next generation of satellites will be equipped with numerous degrees of freedom in power and bandwidth allocation capabilities, making manual resource allocation impractical. Therefore, it is desirable to automate the operation of these highly flexible satellites. This paper presents a novel approach based on Deep Reinforcement Learning to allocate power in multibeam satellite systems. The proposed architecture represents the problem as continuous state and action spaces. We make use of the Proximal Policy Optimization algorithm to optimize the allocation policy for minimum unmet system demand and power consumption. Finally, the performance of the algorithm is analyzed through simulations of a multibeam satellite system. The analysis shows promising results for Deep Reinforcement Learning to be used as a dynamic resource allocation algorithm.","PeriodicalId":196580,"journal":{"name":"2019 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW)","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCAAW.2019.8904901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Many of the next generation of satellites will be equipped with numerous degrees of freedom in power and bandwidth allocation capabilities, making manual resource allocation impractical. Therefore, it is desirable to automate the operation of these highly flexible satellites. This paper presents a novel approach based on Deep Reinforcement Learning to allocate power in multibeam satellite systems. The proposed architecture represents the problem as continuous state and action spaces. We make use of the Proximal Policy Optimization algorithm to optimize the allocation policy for minimum unmet system demand and power consumption. Finally, the performance of the algorithm is analyzed through simulations of a multibeam satellite system. The analysis shows promising results for Deep Reinforcement Learning to be used as a dynamic resource allocation algorithm.
柔性高通量卫星连续功率分配的深度强化学习
许多下一代卫星将在功率和带宽分配能力方面配备许多自由度,使人工资源分配变得不切实际。因此,实现这些高度灵活的卫星的自动化操作是可取的。提出了一种基于深度强化学习的多波束卫星系统功率分配方法。所建议的体系结构将问题表示为连续的状态和操作空间。利用最近邻策略优化算法优化分配策略,使未满足的系统需求和功耗最小。最后,通过多波束卫星系统的仿真分析了该算法的性能。分析结果表明,深度强化学习作为一种动态资源分配算法具有良好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信