Fermat's Last Theorem for regular primes

Alex J Best, C. Birkbeck, Riccardo Brasca, Eric Rodriguez Boidi
{"title":"Fermat's Last Theorem for regular primes","authors":"Alex J Best, C. Birkbeck, Riccardo Brasca, Eric Rodriguez Boidi","doi":"10.48550/arXiv.2305.08955","DOIUrl":null,"url":null,"abstract":"We formalise the proof of the first case of Fermat's Last Theorem for regular primes using the \\emph{Lean} theorem prover and its mathematical library \\emph{mathlib}. This is an important 19th century result that motivated the development of modern algebraic number theory. Besides explaining the mathematics behind this result, we analyze in this paper the difficulties we faced in the formalisation process and how we solved them. For example, we had to deal with a diamond about characteristic zero fields and problems arising from multiple nested coercions related to number fields. We also explain how we integrated our work to \\emph{mathlib}.","PeriodicalId":296683,"journal":{"name":"International Conference on Interactive Theorem Proving","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Interactive Theorem Proving","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.08955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We formalise the proof of the first case of Fermat's Last Theorem for regular primes using the \emph{Lean} theorem prover and its mathematical library \emph{mathlib}. This is an important 19th century result that motivated the development of modern algebraic number theory. Besides explaining the mathematics behind this result, we analyze in this paper the difficulties we faced in the formalisation process and how we solved them. For example, we had to deal with a diamond about characteristic zero fields and problems arising from multiple nested coercions related to number fields. We also explain how we integrated our work to \emph{mathlib}.
正则素数的费马大定理
利用\emph{精益}定理证明器及其数学库\emph{mathlib},形式化证明了正则素数的费马大定理的第一种情形。这是19世纪的一个重要结果,推动了现代代数数论的发展。除了解释这一结果背后的数学原理外,本文还分析了我们在形式化过程中遇到的困难以及我们如何解决这些困难。例如,我们必须处理关于特征零域的菱形和由与数域相关的多个嵌套强制引起的问题。我们还解释了如何将我们的工作集成到\emph{mathlib}中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信