P. Hettiarachchi, N. Fisher, Masud Ahmed, L. Wang, Shinan Wang, Weisong Shi
{"title":"A Design and Analysis Framework for Thermal-Resilient Hard Real-Time Systems","authors":"P. Hettiarachchi, N. Fisher, Masud Ahmed, L. Wang, Shinan Wang, Weisong Shi","doi":"10.1145/2632154","DOIUrl":null,"url":null,"abstract":"We address the challenge of designing predictable real-time systems in an unpredictable thermal environment where environmental temperature may dynamically change (e.g., implantable medical devices). Towards this challenge, we propose a control-theoretic design methodology that permits a system designer to specify a set of hard real-time performance modes under which the system may operate. The system automatically adjusts the real-time performance mode based on the external thermal stress. We show (via analysis, simulations, and a hardware testbed implementation) that our control design framework is stable and control performance is equivalent to previous real-time thermal approaches, even under dynamic temperature changes. A crucial and novel advantage of our framework over previous real-time control is the ability to guarantee hard deadlines even under transitions between modes. Furthermore, our system design permits the calculation of a new metric called thermal resiliency that characterizes the maximum external thermal stress that any hard real-time performance mode can withstand. Thus, our design framework and analysis may be classified as a thermal stress analysis for real-time systems.","PeriodicalId":183677,"journal":{"name":"ACM Trans. Embed. Comput. Syst.","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Embed. Comput. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2632154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
We address the challenge of designing predictable real-time systems in an unpredictable thermal environment where environmental temperature may dynamically change (e.g., implantable medical devices). Towards this challenge, we propose a control-theoretic design methodology that permits a system designer to specify a set of hard real-time performance modes under which the system may operate. The system automatically adjusts the real-time performance mode based on the external thermal stress. We show (via analysis, simulations, and a hardware testbed implementation) that our control design framework is stable and control performance is equivalent to previous real-time thermal approaches, even under dynamic temperature changes. A crucial and novel advantage of our framework over previous real-time control is the ability to guarantee hard deadlines even under transitions between modes. Furthermore, our system design permits the calculation of a new metric called thermal resiliency that characterizes the maximum external thermal stress that any hard real-time performance mode can withstand. Thus, our design framework and analysis may be classified as a thermal stress analysis for real-time systems.