{"title":"Adaptive control of a class of nonlinear systems preceded by an unknown backlash-like hysteresis","authors":"C. Su, Yonghong Tan, Y. Stepanenko","doi":"10.1109/CDC.2000.912064","DOIUrl":null,"url":null,"abstract":"This paper deals with adaptive control of a class of nonlinear dynamic systems preceded by unknown backlash-like hysteresis nonlinearities, where the hysteresis is modeled by a differential equation. By exploiting solution properties of the differential equation and combining those properties with adaptive control techniques, a robust adaptive control algorithm is developed without constructing a hysteresis inverse. The new control law ensures global stability of the adaptive system and achieves both stabilization and tracking to within a desired precision. Simulations performed on a nonlinear system illustrate and clarify the approach.","PeriodicalId":217237,"journal":{"name":"Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2000.912064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
This paper deals with adaptive control of a class of nonlinear dynamic systems preceded by unknown backlash-like hysteresis nonlinearities, where the hysteresis is modeled by a differential equation. By exploiting solution properties of the differential equation and combining those properties with adaptive control techniques, a robust adaptive control algorithm is developed without constructing a hysteresis inverse. The new control law ensures global stability of the adaptive system and achieves both stabilization and tracking to within a desired precision. Simulations performed on a nonlinear system illustrate and clarify the approach.