R. Villarino, G. Junkin, J. Parrón, J. M. González-Arbesú
{"title":"Smaller resonators for artificial magnetic surfaces","authors":"R. Villarino, G. Junkin, J. Parrón, J. M. González-Arbesú","doi":"10.1109/ICEAA.2007.4387264","DOIUrl":null,"url":null,"abstract":"Artificial magnetic surfaces have interesting applications in antenna design where one wants to replace, over a limited frequency range, electric conducting surfaces with magnetic equivalents. One of the many challenges in constructing such a surface is that of miniaturizing the resonator elements making up the structure whilst at the same time maintaining a reasonable bandwidth and a tolerable level of dielectric and copper losses. In this paper we present some novel structures, fabricated using chemical etching techniques, which have only 6.5% of the area of a capacitive loaded loop (CLL) and less than 30% of the area of spiral resonators and have measured return losses of less than 1.5 dB.","PeriodicalId":273595,"journal":{"name":"2007 International Conference on Electromagnetics in Advanced Applications","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Electromagnetics in Advanced Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAA.2007.4387264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Artificial magnetic surfaces have interesting applications in antenna design where one wants to replace, over a limited frequency range, electric conducting surfaces with magnetic equivalents. One of the many challenges in constructing such a surface is that of miniaturizing the resonator elements making up the structure whilst at the same time maintaining a reasonable bandwidth and a tolerable level of dielectric and copper losses. In this paper we present some novel structures, fabricated using chemical etching techniques, which have only 6.5% of the area of a capacitive loaded loop (CLL) and less than 30% of the area of spiral resonators and have measured return losses of less than 1.5 dB.