Nonnegative Matrix Factorization Approach for Image Reconstruction

Yueyang Wang, B. Shafai
{"title":"Nonnegative Matrix Factorization Approach for Image Reconstruction","authors":"Yueyang Wang, B. Shafai","doi":"10.1109/CSCI54926.2021.00076","DOIUrl":null,"url":null,"abstract":"Nonnegative Matrix Factorization (NMF) has been proved to be a powerful method in data processing and has also shown success in applications such as feature extraction and image representation. In this paper, we propose two symmetric matrix-based methods, Symcom and Symize, to achieve square strategy (SQR) in SQR-NMF. This integration process allows the matrix to preserve symmetry property associated with images to enhance image reconstruction. Simulation results show that Symcom performs better on super wide or super long data matrices and Symize achieves better results on symmetrical data matrices.","PeriodicalId":206881,"journal":{"name":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI54926.2021.00076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Nonnegative Matrix Factorization (NMF) has been proved to be a powerful method in data processing and has also shown success in applications such as feature extraction and image representation. In this paper, we propose two symmetric matrix-based methods, Symcom and Symize, to achieve square strategy (SQR) in SQR-NMF. This integration process allows the matrix to preserve symmetry property associated with images to enhance image reconstruction. Simulation results show that Symcom performs better on super wide or super long data matrices and Symize achieves better results on symmetrical data matrices.
图像重构的非负矩阵分解方法
非负矩阵分解(NMF)已被证明是一种强大的数据处理方法,在特征提取和图像表示等应用中也取得了成功。本文提出了两种基于对称矩阵的方法Symcom和Symize来实现SQR- nmf中的平方策略(SQR)。这种积分过程使矩阵保持了与图像相关的对称性,增强了图像的重建能力。仿真结果表明,Symcom在超宽或超长数据矩阵上表现较好,Symize在对称数据矩阵上表现较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信