Ramsey-type problems in orientations of graphs ⇤

B. P. Cavalar
{"title":"Ramsey-type problems in orientations of graphs ⇤","authors":"B. P. Cavalar","doi":"10.5753/etc.2018.3172","DOIUrl":null,"url":null,"abstract":"The Ramsey number R(H) of a graph H is the minimum number n such that there exists a graph G on n vertices with the property that every two-coloring of its edges contains a monochromatic copy of H. In this work we study a variant of this notion, called the oriented Ramsey problem, for an acyclic oriented graph H~ , in which we require that every orientation G~ of the graph G contains a copy of H~ . We also study the threshold function for this problem in random graphs. Finally, we consider the isometric case, in which we require the copy to be isometric, by which we mean that, for every two vertices x, y 2 V (H~ ) and their respective copies x0, y0 in G~ , the distance between x and y is equal to the distance between x0 and y0.","PeriodicalId":315906,"journal":{"name":"Anais do Encontro de Teoria da Computação (ETC)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Encontro de Teoria da Computação (ETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/etc.2018.3172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Ramsey number R(H) of a graph H is the minimum number n such that there exists a graph G on n vertices with the property that every two-coloring of its edges contains a monochromatic copy of H. In this work we study a variant of this notion, called the oriented Ramsey problem, for an acyclic oriented graph H~ , in which we require that every orientation G~ of the graph G contains a copy of H~ . We also study the threshold function for this problem in random graphs. Finally, we consider the isometric case, in which we require the copy to be isometric, by which we mean that, for every two vertices x, y 2 V (H~ ) and their respective copies x0, y0 in G~ , the distance between x and y is equal to the distance between x0 and y0.
图的定向中的ramsey型问题
图H的拉姆齐数R(H)是使图G在n个顶点上的最小值n,使得图G的每条双色边都包含一个H的单色副本。在本文中,我们研究了这个概念的一个变体,称为有向拉姆齐问题,对于无环有向图H~,我们要求图G的每个方向G~都包含一个H~的副本。我们还研究了随机图中这一问题的阈值函数。最后,我们考虑等距的情况,在这种情况下,我们要求复制是等距的,也就是说,对于每两个顶点x, y 2v (H~)和它们各自在G~中的副本x0, y0, x和y之间的距离等于x0和y0之间的距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信