Tapabrata (Rohan) Chakraborty, B. McCane, S. Mills, U. Pal
{"title":"CoCoNet: A Collaborative Convolutional Network applied to fine-grained bird species classification","authors":"Tapabrata (Rohan) Chakraborty, B. McCane, S. Mills, U. Pal","doi":"10.1109/IVCNZ51579.2020.9290677","DOIUrl":null,"url":null,"abstract":"We present an end-to-end deep network for fine-grained visual categorization called Collaborative Convolutional Network (CoCoNet). The network uses a collaborative layer after the convolutional layers to represent an image as an optimal weighted collaboration of features learned from training samples as a whole rather than one at a time. This gives CoCoNet more power to encode the fine-grained nature of the data with limited samples. We perform a detailed study of the performance with 1-stage and 2-stage transfer learning. The ablation study shows that the proposed method outperforms its constituent parts consistently. CoCoNet also outperforms few state-of-the-art competing methods. Experiments have been performed on the fine-grained bird species classification problem as a representative example, but the method may be applied to other similar tasks. We also introduce a new public dataset for fine-grained species recognition, that of Indian endemic birds and have reported initial results on it.","PeriodicalId":164317,"journal":{"name":"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVCNZ51579.2020.9290677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We present an end-to-end deep network for fine-grained visual categorization called Collaborative Convolutional Network (CoCoNet). The network uses a collaborative layer after the convolutional layers to represent an image as an optimal weighted collaboration of features learned from training samples as a whole rather than one at a time. This gives CoCoNet more power to encode the fine-grained nature of the data with limited samples. We perform a detailed study of the performance with 1-stage and 2-stage transfer learning. The ablation study shows that the proposed method outperforms its constituent parts consistently. CoCoNet also outperforms few state-of-the-art competing methods. Experiments have been performed on the fine-grained bird species classification problem as a representative example, but the method may be applied to other similar tasks. We also introduce a new public dataset for fine-grained species recognition, that of Indian endemic birds and have reported initial results on it.