An Novel Parameter Tuning Alogrithm for MapReduce Model

Jun Liu, Rong Liu, Nanjian Li, B. Zhu, L. Jiang, Renyu Huang
{"title":"An Novel Parameter Tuning Alogrithm for MapReduce Model","authors":"Jun Liu, Rong Liu, Nanjian Li, B. Zhu, L. Jiang, Renyu Huang","doi":"10.1109/ICEIEC.2018.8473562","DOIUrl":null,"url":null,"abstract":"The performance optimization of MapReduce clusters has received significant attention in recent years, because it plays an important role on MapReduce clusters. Parameter tuning is one important way to optimize the performance of MapReduce clusters. Traditional parameter tuning performs poorly in automatic configuration of the parameters. To address the problem, an efficient parameter tuning algorithm for MapReduce clusters is proposed in this paper. In this paper, a detail analysis about the execution process of jobs on MapReduce clusters is described. Moreover, the objective function about the parameters is introduced by the least square method. In order to solve the objective function, particle swarm optimization is introduced to find the optimal solution of the parameters. Experimental results prove that the proposed parameter tuning algorithm is able to perform well in terms of execution time for jobs in MapReduce clusters.","PeriodicalId":344233,"journal":{"name":"2018 8th International Conference on Electronics Information and Emergency Communication (ICEIEC)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 8th International Conference on Electronics Information and Emergency Communication (ICEIEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIEC.2018.8473562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The performance optimization of MapReduce clusters has received significant attention in recent years, because it plays an important role on MapReduce clusters. Parameter tuning is one important way to optimize the performance of MapReduce clusters. Traditional parameter tuning performs poorly in automatic configuration of the parameters. To address the problem, an efficient parameter tuning algorithm for MapReduce clusters is proposed in this paper. In this paper, a detail analysis about the execution process of jobs on MapReduce clusters is described. Moreover, the objective function about the parameters is introduced by the least square method. In order to solve the objective function, particle swarm optimization is introduced to find the optimal solution of the parameters. Experimental results prove that the proposed parameter tuning algorithm is able to perform well in terms of execution time for jobs in MapReduce clusters.
一种新的MapReduce模型参数调优算法
MapReduce集群的性能优化是近年来备受关注的问题,因为它在MapReduce集群中起着重要的作用。参数调优是优化MapReduce集群性能的重要方法之一。传统的参数调优在参数的自动配置中表现不佳。为了解决这一问题,本文提出了一种高效的MapReduce集群参数调优算法。本文详细分析了MapReduce集群上作业的执行过程。利用最小二乘法引入了参数的目标函数。为了求解目标函数,引入粒子群算法求解参数的最优解。实验结果表明,所提出的参数调优算法在MapReduce集群中作业的执行时间方面具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信