An Ensemble Approach to Transfer Learning for Classification of Habitat Mapping

Prajowal Manandhar, P. Marpu, Z. Aung
{"title":"An Ensemble Approach to Transfer Learning for Classification of Habitat Mapping","authors":"Prajowal Manandhar, P. Marpu, Z. Aung","doi":"10.1109/CSPIS.2018.8642722","DOIUrl":null,"url":null,"abstract":"The Environment Agency- Abu Dhabi developed extensive habitat, land cover, land use maps in 2015 using a very high resolution satellite imagery acquired between 2011 and 2013. This map can be used as a baseline map to allow efficient monitoring. In this work, we aim to establish a framework for short term updates to the maps to quickly enable efficient planning. With the availability of multi-spectral images, various spectral bands apart from visible (Red, Green and Blue) bands can be used in habitat mapping. This paper presents the work of land cover classification in the region of Abu Dhabi, UAE using a Worldview-2 satellite image. The proposed approach makes use of Random Forest algorithm, applied on the Fully-Connected features obtained from AlexNet framework using a 20% training samples on a 3-band input. Then, ensemble of outputs of Random Forest over different 3-bands combination is used to make the final prediction. The results are validated against the ground truth obtained from Environment Agency, Abu Dhabi. Eventually, our aim is to develop a robust classification approach and then adapt automatic change detection approaches to temporally update the baseline maps.","PeriodicalId":251356,"journal":{"name":"2018 International Conference on Signal Processing and Information Security (ICSPIS)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Signal Processing and Information Security (ICSPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPIS.2018.8642722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The Environment Agency- Abu Dhabi developed extensive habitat, land cover, land use maps in 2015 using a very high resolution satellite imagery acquired between 2011 and 2013. This map can be used as a baseline map to allow efficient monitoring. In this work, we aim to establish a framework for short term updates to the maps to quickly enable efficient planning. With the availability of multi-spectral images, various spectral bands apart from visible (Red, Green and Blue) bands can be used in habitat mapping. This paper presents the work of land cover classification in the region of Abu Dhabi, UAE using a Worldview-2 satellite image. The proposed approach makes use of Random Forest algorithm, applied on the Fully-Connected features obtained from AlexNet framework using a 20% training samples on a 3-band input. Then, ensemble of outputs of Random Forest over different 3-bands combination is used to make the final prediction. The results are validated against the ground truth obtained from Environment Agency, Abu Dhabi. Eventually, our aim is to develop a robust classification approach and then adapt automatic change detection approaches to temporally update the baseline maps.
基于集成迁移学习的生境映射分类研究
2015年,阿布扎比环境署利用2011年至2013年获得的高分辨率卫星图像,绘制了广泛的栖息地、土地覆盖和土地利用地图。该地图可以用作基线地图,以便进行有效的监控。在这项工作中,我们的目标是建立一个短期更新地图的框架,以快速实现有效的规划。随着多光谱图像的可用性,除了可见光波段(红、绿、蓝)之外,还可以利用不同的光谱波段进行生境制图。本文介绍了利用Worldview-2卫星图像对阿联酋阿布扎比地区进行土地覆盖分类的工作。所提出的方法使用随机森林算法,应用于从AlexNet框架获得的全连接特征,在3波段输入上使用20%的训练样本。然后,对不同3波段组合的随机森林输出进行集合,进行最终预测。结果与阿布扎比环境局获得的地面事实进行了验证。最终,我们的目标是开发一个健壮的分类方法,然后采用自动变更检测方法来临时更新基线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信