Missing Data Imputation and Meta-analysis on Correlation of Spatio-Temporal Weather Series Data

Alkiviadis Kyrtsoglou, Dimara Asimina, Dimitrios Triantafyllidis, S. Krinidis, Konstantinos Kitsikoudis, D. Ioannidis, Stavros Antypas, Georgios Tsoukos, D. Tzovaras
{"title":"Missing Data Imputation and Meta-analysis on Correlation of Spatio-Temporal Weather Series Data","authors":"Alkiviadis Kyrtsoglou, Dimara Asimina, Dimitrios Triantafyllidis, S. Krinidis, Konstantinos Kitsikoudis, D. Ioannidis, Stavros Antypas, Georgios Tsoukos, D. Tzovaras","doi":"10.1109/iemcon53756.2021.9623154","DOIUrl":null,"url":null,"abstract":"Even though weather time series are easy to be found, complete and large data sets are almost impossible to be retrieved. In this paper, an assessment of missing weather data in small data sets is introduced utilizing correlation and meta-analysis of different weather parameters like temperature, humidity and wind speed. Auto regressive integrated moving average (ARIMA), a well-known artificial model and widely used for weather prediction, is evaluated on various sets with missing data. The results of an univariate and multivariate ARIMA model are presented to come up to the best model for each feature and parameter. Finally, the most accurate model is tested against real life data, revealing that imputation of missing data increases prediction accuracy for almost 50%.","PeriodicalId":272590,"journal":{"name":"2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iemcon53756.2021.9623154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Even though weather time series are easy to be found, complete and large data sets are almost impossible to be retrieved. In this paper, an assessment of missing weather data in small data sets is introduced utilizing correlation and meta-analysis of different weather parameters like temperature, humidity and wind speed. Auto regressive integrated moving average (ARIMA), a well-known artificial model and widely used for weather prediction, is evaluated on various sets with missing data. The results of an univariate and multivariate ARIMA model are presented to come up to the best model for each feature and parameter. Finally, the most accurate model is tested against real life data, revealing that imputation of missing data increases prediction accuracy for almost 50%.
时空天气序列数据的缺失数据输入与相关性元分析
虽然天气时间序列很容易找到,但完整的大型数据集几乎不可能检索到。本文介绍了利用温度、湿度和风速等不同天气参数的相关性和元分析,对小数据集的气象数据缺失进行评估的方法。自动回归综合移动平均(ARIMA)是一种广为人知的人工模型,广泛应用于天气预报。给出了单变量和多变量ARIMA模型的结果,以得出每个特征和参数的最佳模型。最后,对最准确的模型进行了实际生活数据的测试,结果表明,缺失数据的插入使预测精度提高了近50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信