A new neural unsupervised classification approach using amended competitive Hebbian learning: PET image segmentation insights

M. Timouyas, S. Eddarouich, A. Hammouch
{"title":"A new neural unsupervised classification approach using amended competitive Hebbian learning: PET image segmentation insights","authors":"M. Timouyas, S. Eddarouich, A. Hammouch","doi":"10.1504/IJBRA.2017.10002820","DOIUrl":null,"url":null,"abstract":"This paper proposes a new classification procedure based on the competitive concept, divided into three processing stages. It begins by the estimation of the Probability Density Function (pdf), followed by a competitive training neural network with the Mahalanobis distance as an activation function. This stage allows detecting the local maxima of the pdf. Then, we use the competitive Hebbian learning to analyse the connectivity between the detected maxima of the pdf upon the Mahalanobis distance. The so detected groups of maxima are then used for the classification process. Compared to the K-means clustering or the clustering approaches based on the different competitive learning schemes, the proposed approach has proven, under a number of real (positron emission tomography image) and synthetic data samples, that it does not pass by any thresholding and does not require any prior information on the number of classes or on the structure of their distributions in the data set.","PeriodicalId":434900,"journal":{"name":"Int. J. Bioinform. Res. Appl.","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bioinform. Res. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBRA.2017.10002820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a new classification procedure based on the competitive concept, divided into three processing stages. It begins by the estimation of the Probability Density Function (pdf), followed by a competitive training neural network with the Mahalanobis distance as an activation function. This stage allows detecting the local maxima of the pdf. Then, we use the competitive Hebbian learning to analyse the connectivity between the detected maxima of the pdf upon the Mahalanobis distance. The so detected groups of maxima are then used for the classification process. Compared to the K-means clustering or the clustering approaches based on the different competitive learning schemes, the proposed approach has proven, under a number of real (positron emission tomography image) and synthetic data samples, that it does not pass by any thresholding and does not require any prior information on the number of classes or on the structure of their distributions in the data set.
利用改进的竞争性Hebbian学习的一种新的神经无监督分类方法:PET图像分割洞察
本文提出了一种新的基于竞争概念的分类程序,分为三个处理阶段。首先是概率密度函数(pdf)的估计,然后是一个以马氏距离作为激活函数的竞争性训练神经网络。这个阶段允许检测pdf的局部最大值。然后,我们使用竞争Hebbian学习来分析在马氏距离上检测到的pdf最大值之间的连通性。然后将检测到的最大值组用于分类过程。与K-means聚类或基于不同竞争学习方案的聚类方法相比,该方法在许多真实(正电子发射断层扫描图像)和合成数据样本下证明了它不通过任何阈值,也不需要任何关于数据集中类的数量或分布结构的先验信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信