L. Vakhitova, N. Taran, Konstantin Kalafat, V. Bessarabov, V. Shologon, S. Pridatko
{"title":"FIRE PROTECTIVE EFFICIENCY OF INTUMESCENT TYPE EPOXIDE COATING","authors":"L. Vakhitova, N. Taran, Konstantin Kalafat, V. Bessarabov, V. Shologon, S. Pridatko","doi":"10.31474/1999-981x-2021-1-143-153","DOIUrl":null,"url":null,"abstract":"Purpose. The purpose of this work is to study the thermal degradation of epoxy polymers and nanocomposites based on them in a fire retardant intumescent coating having a composition – ammonium polyphosphate / melamine / pentaerythritol. Methods. Thermogravimetric studies have been performed on the device “Thermoscan-2”, fire tests were performed by the method of “Bunsen burner”. Results. The influence of the structure of epoxy resin as a polymer component of the intumescent system on oxidative thermal destruction and fire retardant efficiency of reactive coating has been researched. The obtained results allow us to state that the best result has been demonstrated by Araldite GY 783 – epoxy resin of bisphenols A/F with a reactive solvent. The thermal properties of various epoxy resins and nanocomposites based on them with organomodified montmorillonite have been studied. It was found that montmorillonite in the nanocomposite increases the decomposition temperature of epoxy resin. Scientific novelty. It has been shown that the variation of the polymer component of the intumescent coating has little effect on the swelling rate, but the fire retardant efficiency of the intumescent composition containing epoxy resin of bisphenols A/F is higher than the same characteristic for the composition based on epoxy resin of bisphenol A. It has been established that the exclusion of pentaerythritol from the formulation of the epoxy intumescent system causes the formation of a more regular and durable char insulation layer. It has been proved that the use of additional, including nanostructured flame retardants, namely, modified montmorillonite, can increase the fire retardant efficiency of the coating. Practical significance. The obtained results are of practical importance for the development of new scientific approaches to the design of fire-fighting materials with improved performance characteristics through the use of polymers that provide the construction of a thermostable thermal insulation char layer. Through a series of systematic tests, it has been demonstrated that the use of nanoclay and nanocomposites based on epoxy resins allows to improve the formulations of intumescent coatings with high performance with the help of budget nanotechnologies.","PeriodicalId":344647,"journal":{"name":"JOURNAL of Donetsk mining institute","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL of Donetsk mining institute","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31474/1999-981x-2021-1-143-153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose. The purpose of this work is to study the thermal degradation of epoxy polymers and nanocomposites based on them in a fire retardant intumescent coating having a composition – ammonium polyphosphate / melamine / pentaerythritol. Methods. Thermogravimetric studies have been performed on the device “Thermoscan-2”, fire tests were performed by the method of “Bunsen burner”. Results. The influence of the structure of epoxy resin as a polymer component of the intumescent system on oxidative thermal destruction and fire retardant efficiency of reactive coating has been researched. The obtained results allow us to state that the best result has been demonstrated by Araldite GY 783 – epoxy resin of bisphenols A/F with a reactive solvent. The thermal properties of various epoxy resins and nanocomposites based on them with organomodified montmorillonite have been studied. It was found that montmorillonite in the nanocomposite increases the decomposition temperature of epoxy resin. Scientific novelty. It has been shown that the variation of the polymer component of the intumescent coating has little effect on the swelling rate, but the fire retardant efficiency of the intumescent composition containing epoxy resin of bisphenols A/F is higher than the same characteristic for the composition based on epoxy resin of bisphenol A. It has been established that the exclusion of pentaerythritol from the formulation of the epoxy intumescent system causes the formation of a more regular and durable char insulation layer. It has been proved that the use of additional, including nanostructured flame retardants, namely, modified montmorillonite, can increase the fire retardant efficiency of the coating. Practical significance. The obtained results are of practical importance for the development of new scientific approaches to the design of fire-fighting materials with improved performance characteristics through the use of polymers that provide the construction of a thermostable thermal insulation char layer. Through a series of systematic tests, it has been demonstrated that the use of nanoclay and nanocomposites based on epoxy resins allows to improve the formulations of intumescent coatings with high performance with the help of budget nanotechnologies.