Application of Machine Learning for GUI Test Automation

Ritu Walia
{"title":"Application of Machine Learning for GUI Test Automation","authors":"Ritu Walia","doi":"10.1109/ICAT54566.2022.9811187","DOIUrl":null,"url":null,"abstract":"This paper examines the implementation of machine learning (ML) capabilities in a test automation suite, specifically for automation of graphical user interface (GUI) testing on an electronic design automation (EDA) tool within an integrated circuit (IC) physical design, verification, and implementation flow. We present a case study using existing tests to extract information and propose an ML implementation framework that consists of three modules, which can be adopted as a systematic pattern for test development. Our study focusses on implementation of the third module in this framework. We use the learnings from iterative testing patterns on a set of EDA tools provided by the Calibre RealTime interfaces from Siemens Digital Industries Software. The goal is to reduce human effort in selection and implementation of test cases and reallocate those resources to integral parts of the testing process like, approving and acting. We first establish metrics and variables, utilize VGG16 architecture for image classification and perform training on test data, and achieve an ML model based on accuracy and precision. Using this result, we present ML implementation as part of the script development process and analyze its impact. Based on our results, we conclude the third module of a framework for inclusion of ML in a regression testing suite for GUI test automation.","PeriodicalId":414786,"journal":{"name":"2022 XXVIII International Conference on Information, Communication and Automation Technologies (ICAT)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 XXVIII International Conference on Information, Communication and Automation Technologies (ICAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAT54566.2022.9811187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper examines the implementation of machine learning (ML) capabilities in a test automation suite, specifically for automation of graphical user interface (GUI) testing on an electronic design automation (EDA) tool within an integrated circuit (IC) physical design, verification, and implementation flow. We present a case study using existing tests to extract information and propose an ML implementation framework that consists of three modules, which can be adopted as a systematic pattern for test development. Our study focusses on implementation of the third module in this framework. We use the learnings from iterative testing patterns on a set of EDA tools provided by the Calibre RealTime interfaces from Siemens Digital Industries Software. The goal is to reduce human effort in selection and implementation of test cases and reallocate those resources to integral parts of the testing process like, approving and acting. We first establish metrics and variables, utilize VGG16 architecture for image classification and perform training on test data, and achieve an ML model based on accuracy and precision. Using this result, we present ML implementation as part of the script development process and analyze its impact. Based on our results, we conclude the third module of a framework for inclusion of ML in a regression testing suite for GUI test automation.
机器学习在GUI测试自动化中的应用
本文研究了测试自动化套件中机器学习(ML)功能的实现,特别是在集成电路(IC)物理设计、验证和实现流程中的电子设计自动化(EDA)工具上的图形用户界面(GUI)测试的自动化。我们提出了一个使用现有测试提取信息的案例研究,并提出了一个由三个模块组成的机器学习实现框架,该框架可以作为测试开发的系统模式。我们的研究重点是该框架中第三个模块的实现。我们在Siemens Digital Industries Software的Calibre RealTime接口提供的一组EDA工具上使用从迭代测试模式中学到的知识。目标是减少人类在选择和实现测试用例方面的工作,并将这些资源重新分配到测试过程的组成部分,如批准和执行。我们首先建立度量和变量,利用VGG16架构对图像进行分类,并对测试数据进行训练,实现基于准确度和精度的机器学习模型。使用这个结果,我们将ML实现作为脚本开发过程的一部分,并分析其影响。根据我们的结果,我们总结了框架的第三个模块,用于将ML包含在GUI测试自动化的回归测试套件中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信