A Quality Metric for K-Means Clustering

M. Thulasidas
{"title":"A Quality Metric for K-Means Clustering","authors":"M. Thulasidas","doi":"10.1109/FSKD.2018.8687210","DOIUrl":null,"url":null,"abstract":"From a teaching perspective, K-Means algorithm for clustering figures in the introductory courses in data analytics because of its conceptual simplicity. However, it suffers from a couple of drawbacks in terms of variable selection and the determination of the optimal number of clusters. In this paper, we present a new, mathematically defensible, quality metric for K-Means clustering based on the standard score of the distribution of the centroids. Furthermore, we demonstrate how this Standard Score Metric (SSM) can be used for automatic variable selection and optimal number of clusters using well-known data sets as well as real data collected locally.","PeriodicalId":235481,"journal":{"name":"2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2018.8687210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

From a teaching perspective, K-Means algorithm for clustering figures in the introductory courses in data analytics because of its conceptual simplicity. However, it suffers from a couple of drawbacks in terms of variable selection and the determination of the optimal number of clusters. In this paper, we present a new, mathematically defensible, quality metric for K-Means clustering based on the standard score of the distribution of the centroids. Furthermore, we demonstrate how this Standard Score Metric (SSM) can be used for automatic variable selection and optimal number of clusters using well-known data sets as well as real data collected locally.
k -均值聚类的质量度量
从教学角度来看,K-Means算法在数据分析入门课程中聚类图,因为其概念简单。然而,它在变量选择和最佳簇数的确定方面存在一些缺点。在本文中,我们提出了一种新的,数学上站得住脚的,基于质心分布的标准分数的K-Means聚类质量度量。此外,我们还演示了如何使用标准分数度量(SSM)来使用已知的数据集和本地收集的真实数据进行自动变量选择和最优簇数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信