Segmentation of Brain Tumor Tissues in HGG and LGG MR Images Using 3D U-net Convolutional Neural Network

Poornachandra Sandur, C. Naveena, Manjunath Aradhya, B. NagasundaraK.
{"title":"Segmentation of Brain Tumor Tissues in HGG and LGG MR Images Using 3D U-net Convolutional Neural Network","authors":"Poornachandra Sandur, C. Naveena, Manjunath Aradhya, B. NagasundaraK.","doi":"10.4018/IJNCR.2018040102","DOIUrl":null,"url":null,"abstract":"The quantitative assessment of tumor extent is necessary for surgical planning, as well as monitoring of tumor growth or shrinkage, and radiotherapy planning. For brain tumors, magnetic resonance imaging MRI is used as a standard for diagnosis and prognosis. Manually segmenting brain tumors from 3D MRI volumes is tedious and depends on inter and intra observer variability. In the clinical facilities, a reliable fully automatic brain tumor segmentation method is necessary for the accurate delineation of tumor sub regions. This article presents a 3D U-net Convolutional Neural Network for segmentation of a brain tumor. The proposed method achieves a mean dice score of 0.83, a specificity of 0.80 and a sensitivity of 0.81 for segmenting the whole tumor, and for the tumor core region a mean dice score of 0.76, a specificity of 0.79 and a sensitivity of 0.73. For the enhancing region, the mean dice score is 0.68, a specificity of 0.73 and a sensitivity of 0.77. From the experimental analysis, the proposed U-net model achieved considerably good results compared to the other segmentation models.","PeriodicalId":369881,"journal":{"name":"Int. J. Nat. Comput. Res.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Nat. Comput. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJNCR.2018040102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The quantitative assessment of tumor extent is necessary for surgical planning, as well as monitoring of tumor growth or shrinkage, and radiotherapy planning. For brain tumors, magnetic resonance imaging MRI is used as a standard for diagnosis and prognosis. Manually segmenting brain tumors from 3D MRI volumes is tedious and depends on inter and intra observer variability. In the clinical facilities, a reliable fully automatic brain tumor segmentation method is necessary for the accurate delineation of tumor sub regions. This article presents a 3D U-net Convolutional Neural Network for segmentation of a brain tumor. The proposed method achieves a mean dice score of 0.83, a specificity of 0.80 and a sensitivity of 0.81 for segmenting the whole tumor, and for the tumor core region a mean dice score of 0.76, a specificity of 0.79 and a sensitivity of 0.73. For the enhancing region, the mean dice score is 0.68, a specificity of 0.73 and a sensitivity of 0.77. From the experimental analysis, the proposed U-net model achieved considerably good results compared to the other segmentation models.
基于三维U-net卷积神经网络的HGG和LGG MR图像中脑肿瘤组织分割
肿瘤范围的定量评估是手术计划、肿瘤生长或缩小监测、放疗计划的必要条件。对于脑肿瘤,磁共振成像(MRI)是诊断和预后的标准。从三维MRI体积中手动分割脑肿瘤是繁琐的,并且依赖于观察者之间和内部的可变性。在临床设施中,一种可靠的全自动脑肿瘤分割方法是准确描绘肿瘤亚区所必需的。本文提出了一种用于脑肿瘤分割的三维U-net卷积神经网络。该方法对整个肿瘤的平均dice得分为0.83,特异性为0.80,敏感性为0.81,对肿瘤核心区域的平均dice得分为0.76,特异性为0.79,敏感性为0.73。对于增强区域,平均骰子评分为0.68,特异性为0.73,敏感性为0.77。实验分析表明,与其他分割模型相比,所提出的U-net模型取得了相当好的分割效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信