Towards self-navigating cars using MEMS IMU: Challenges and opportunities

I. Prikhodko, Brock Bearss, Carey Merritt, J. Bergeron, Charles Blackmer
{"title":"Towards self-navigating cars using MEMS IMU: Challenges and opportunities","authors":"I. Prikhodko, Brock Bearss, Carey Merritt, J. Bergeron, Charles Blackmer","doi":"10.1109/ISISS.2018.8358141","DOIUrl":null,"url":null,"abstract":"In this work, we experimentally demonstrate strapdown inertial navigation for automobiles with position errors reaching GPS-like accuracies by using a tactical-grade MEMS gyroscope in an Inertial Measurement Unit (IMU) for attitude estimation and a speedometer for velocity estimation. This paper also analyzes the propagation of sensor errors into position error and determines that the gyroscope rate integration error due to combined Angle Random Walk (ARW) and Bias Instability (BI) is the dominant source. We conclude that dead-reckoning the position using tactical-grade MEMS gyroscopes without aiding is feasible for car navigation over 10 minutes with the 30 m position rms error dominated by gyroscope errors (GPS accuracy is 15 m).","PeriodicalId":237642,"journal":{"name":"2018 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISISS.2018.8358141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

In this work, we experimentally demonstrate strapdown inertial navigation for automobiles with position errors reaching GPS-like accuracies by using a tactical-grade MEMS gyroscope in an Inertial Measurement Unit (IMU) for attitude estimation and a speedometer for velocity estimation. This paper also analyzes the propagation of sensor errors into position error and determines that the gyroscope rate integration error due to combined Angle Random Walk (ARW) and Bias Instability (BI) is the dominant source. We conclude that dead-reckoning the position using tactical-grade MEMS gyroscopes without aiding is feasible for car navigation over 10 minutes with the 30 m position rms error dominated by gyroscope errors (GPS accuracy is 15 m).
利用MEMS IMU实现自动驾驶汽车:挑战与机遇
在这项工作中,我们通过实验证明了捷联惯性导航汽车的位置误差达到类似gps的精度,通过在惯性测量单元(IMU)中使用战术级MEMS陀螺仪进行姿态估计和速度计进行速度估计。分析了传感器误差转化为位置误差的传播规律,认为角随机游走(ARW)和偏置不稳定性(BI)联合引起的陀螺仪速率积分误差是主要来源。我们得出结论,使用战术级MEMS陀螺仪在没有辅助的情况下进行位置航位推算是可行的,其位置均方根误差为30 m,主要由陀螺仪误差(GPS精度为15 m)主导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信