{"title":"A vision and GPS-based real-time trajectory planning for MAV in unknown urban environments","authors":"G. Flores, Shuting Zhou, R. Lozano, P. Castillo","doi":"10.1109/ICUAS.2013.6564806","DOIUrl":null,"url":null,"abstract":"This paper addresses the issue of real-time optimal trajectory generation of a micro Air Vehicle (MAV) in unknown urban environments. The MAV is required to navigate from an initial and outdoor position to a final position inside a building. To achieve this objective, we develop a safe path planning method using the information provided by the GPS and a consumer depth camera. With the purpose to develop a safe path planning with obstacle avoidance capabilities, a model predictive control approach is developed, which uses the environment information acquired by the navigation system.","PeriodicalId":322089,"journal":{"name":"2013 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS.2013.6564806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
This paper addresses the issue of real-time optimal trajectory generation of a micro Air Vehicle (MAV) in unknown urban environments. The MAV is required to navigate from an initial and outdoor position to a final position inside a building. To achieve this objective, we develop a safe path planning method using the information provided by the GPS and a consumer depth camera. With the purpose to develop a safe path planning with obstacle avoidance capabilities, a model predictive control approach is developed, which uses the environment information acquired by the navigation system.