A Low Complexity Long Short-Term Memory Based Voice Activity Detection

Ruiting Yang, Jie Liu, Xiang Deng, Zhuochao Zheng
{"title":"A Low Complexity Long Short-Term Memory Based Voice Activity Detection","authors":"Ruiting Yang, Jie Liu, Xiang Deng, Zhuochao Zheng","doi":"10.1109/MMSP48831.2020.9287142","DOIUrl":null,"url":null,"abstract":"Voice Activity Detection (VAD) plays an important role in audio processing, but it is also a common challenge when a voice signal is corrupted with strong and transient noise. In this paper, an accurate and causal VAD module using a long short-term memory (LSTM) deep neural network is proposed. A set of features including Gammatone cepstral coefficients (GTCC) and selected spectral features are used. The low complex structure allows it can be easily implemented in speech processing algorithms and applications. With carefully pre-processing and labeling the collected training data in the classes of speech or non-speech and training on the LSTM net, experiments show the proposed VAD is able to distinguish speech from different types of noisy background effectively. Its robustness against changes including varying frame length, moving speech sources and speaking in different languages, are further investigated.","PeriodicalId":188283,"journal":{"name":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP48831.2020.9287142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Voice Activity Detection (VAD) plays an important role in audio processing, but it is also a common challenge when a voice signal is corrupted with strong and transient noise. In this paper, an accurate and causal VAD module using a long short-term memory (LSTM) deep neural network is proposed. A set of features including Gammatone cepstral coefficients (GTCC) and selected spectral features are used. The low complex structure allows it can be easily implemented in speech processing algorithms and applications. With carefully pre-processing and labeling the collected training data in the classes of speech or non-speech and training on the LSTM net, experiments show the proposed VAD is able to distinguish speech from different types of noisy background effectively. Its robustness against changes including varying frame length, moving speech sources and speaking in different languages, are further investigated.
基于低复杂度长短期记忆的语音活动检测
语音活动检测(VAD)在音频处理中起着重要的作用,但当语音信号被强烈的瞬态噪声破坏时,它也是一个常见的挑战。本文提出了一种基于长短期记忆(LSTM)深度神经网络的精确因果VAD模块。使用了一组特征,包括伽玛酮倒谱系数(GTCC)和选定的光谱特征。低复杂度的结构使得它可以很容易地实现在语音处理算法和应用中。通过对采集到的训练数据进行预处理和标记,将其分为语音类和非语音类,并在LSTM网络上进行训练,实验表明,所提出的VAD能够有效地从不同类型的噪声背景中区分语音。进一步研究了该算法对不同帧长、移动语音源和不同语言的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信