GROPHECY: GPU performance projection from CPU code skeletons

Jiayuan Meng, V. Morozov, Kalyan Kumaran, V. Vishwanath, T. Uram
{"title":"GROPHECY: GPU performance projection from CPU code skeletons","authors":"Jiayuan Meng, V. Morozov, Kalyan Kumaran, V. Vishwanath, T. Uram","doi":"10.1145/2063384.2063402","DOIUrl":null,"url":null,"abstract":"We propose GROPHECY, a GPU performance projection framework that can estimate the performance benefit of GPU acceleration without actual GPU programming or hardware. Users need only to skeletonize pieces of CPU code that are targets for GPU acceleration. Code skeletons are automatically transformed in various ways to mimic tuned GPU codes with characteristics resembling real implementations. The synthesized characteristics are used by an existing analytical model to project GPU performance. The cost and benefit of GPU development can then be estimated according to the transformed code skeleton that yields the best projected performance. With GROPHECY, users can leap toward GPU acceleration only when the cost-benefit makes sense. The framework is validated using kernel benchmarks and data-parallel codes in legacy scientific applications. The measured performance of manually tuned codes deviates from the projected performance by 17% in geometric mean.","PeriodicalId":358797,"journal":{"name":"2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"102","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063384.2063402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 102

Abstract

We propose GROPHECY, a GPU performance projection framework that can estimate the performance benefit of GPU acceleration without actual GPU programming or hardware. Users need only to skeletonize pieces of CPU code that are targets for GPU acceleration. Code skeletons are automatically transformed in various ways to mimic tuned GPU codes with characteristics resembling real implementations. The synthesized characteristics are used by an existing analytical model to project GPU performance. The cost and benefit of GPU development can then be estimated according to the transformed code skeleton that yields the best projected performance. With GROPHECY, users can leap toward GPU acceleration only when the cost-benefit makes sense. The framework is validated using kernel benchmarks and data-parallel codes in legacy scientific applications. The measured performance of manually tuned codes deviates from the projected performance by 17% in geometric mean.
GROPHECY: CPU代码骨架的GPU性能投影
我们提出GROPHECY,一个GPU性能投影框架,可以估计GPU加速的性能效益,而无需实际的GPU编程或硬件。用户只需要勾勒出GPU加速目标的CPU代码片段。代码骨架以各种方式自动转换,以模拟具有类似于实际实现特征的优化GPU代码。利用已有的分析模型来预测GPU的性能。GPU开发的成本和收益可以根据产生最佳预期性能的转换代码框架来估计。有了GROPHECY,用户只有在成本效益合理的情况下才能跳到GPU加速。该框架使用遗留科学应用程序中的内核基准测试和数据并行代码进行了验证。手动调优代码的测量性能与预测性能的几何平均值相差17%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信