Workload pattern analysis

M. Vora
{"title":"Workload pattern analysis","authors":"M. Vora","doi":"10.1109/ICOSC.2015.7050793","DOIUrl":null,"url":null,"abstract":"In a service oriented world, performance plays a vital role in the success of any IT system. For an application running in a production environment, whenever there is a change in the workload or workload pattern, utilization of major server resources like cpus, disks, memory, network etc. will also change. In this paper, we are extending our methodology to estimate the server resource utilization for any given workload pattern by extracting the optimal information from the historic production logs (application logs and resource utilization or system monitoring logs) using a specifically designed genetic algorithm. Across all experimental validations, we find the average absolute error in estimating utilization of server resources was less than 15%. Unlike traditional approaches to estimate overall resource utilization, method presented here, neither requires to estimate service demands for each individual application functions nor does it require to benchmark individual business transactions. Only necessary input to the model is the application logs containing the information about the throughput (for example an access log in case of web application) and system monitoring logs containing aggregate resource utilization information.","PeriodicalId":126701,"journal":{"name":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2015.7050793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In a service oriented world, performance plays a vital role in the success of any IT system. For an application running in a production environment, whenever there is a change in the workload or workload pattern, utilization of major server resources like cpus, disks, memory, network etc. will also change. In this paper, we are extending our methodology to estimate the server resource utilization for any given workload pattern by extracting the optimal information from the historic production logs (application logs and resource utilization or system monitoring logs) using a specifically designed genetic algorithm. Across all experimental validations, we find the average absolute error in estimating utilization of server resources was less than 15%. Unlike traditional approaches to estimate overall resource utilization, method presented here, neither requires to estimate service demands for each individual application functions nor does it require to benchmark individual business transactions. Only necessary input to the model is the application logs containing the information about the throughput (for example an access log in case of web application) and system monitoring logs containing aggregate resource utilization information.
工作负载模式分析
在面向服务的世界中,性能对任何IT系统的成功都起着至关重要的作用。对于在生产环境中运行的应用程序,每当工作负载或工作负载模式发生变化时,cpu、磁盘、内存、网络等主要服务器资源的利用率也会发生变化。在本文中,我们将扩展我们的方法,通过使用专门设计的遗传算法从历史生产日志(应用程序日志和资源利用或系统监视日志)中提取最佳信息,来估计任何给定工作负载模式的服务器资源利用率。在所有的实验验证中,我们发现估计服务器资源利用率的平均绝对误差小于15%。与估计总体资源利用率的传统方法不同,本文介绍的方法既不需要估计每个单独应用程序功能的服务需求,也不需要对单个业务事务进行基准测试。该模型的唯一必要输入是包含吞吐量信息的应用程序日志(例如web应用程序中的访问日志)和包含聚合资源利用信息的系统监控日志。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信