Preprocessing Position Data of Mobile Objects

Nicola Hönle, M. Großmann, D. Nicklas, B. Mitschang
{"title":"Preprocessing Position Data of Mobile Objects","authors":"Nicola Hönle, M. Großmann, D. Nicklas, B. Mitschang","doi":"10.1109/MDM.2008.27","DOIUrl":null,"url":null,"abstract":"We present the design and implementation of a component for the preprocessing of position data taken from moving objects. The movement of mobile objects is represented by piece wise functions over time that approximate the real object movement and significantly reduce the initial data volume such that efficient storage and analysis of object trajectories can be achieved. The maximal acceptable deviation - an input parameter of our algorithms - of the approximations also includes the uncertainty of the position sensor measurements. We analyze and compare five different lossy preprocessing methods. Our results clearly indicate that even with simple approaches, a more than sufficient overall performance can be achieved.","PeriodicalId":365750,"journal":{"name":"The Ninth International Conference on Mobile Data Management (mdm 2008)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ninth International Conference on Mobile Data Management (mdm 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDM.2008.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

We present the design and implementation of a component for the preprocessing of position data taken from moving objects. The movement of mobile objects is represented by piece wise functions over time that approximate the real object movement and significantly reduce the initial data volume such that efficient storage and analysis of object trajectories can be achieved. The maximal acceptable deviation - an input parameter of our algorithms - of the approximations also includes the uncertainty of the position sensor measurements. We analyze and compare five different lossy preprocessing methods. Our results clearly indicate that even with simple approaches, a more than sufficient overall performance can be achieved.
移动物体位置数据的预处理
我们设计并实现了一个用于对运动物体的位置数据进行预处理的组件。随着时间的推移,移动物体的运动由分段函数表示,该函数近似真实物体的运动,并显着减少初始数据量,从而可以实现有效的物体轨迹存储和分析。最大可接受偏差-我们算法的输入参数-的近似值也包括位置传感器测量的不确定性。分析比较了五种不同的有损预处理方法。我们的结果清楚地表明,即使使用简单的方法,也可以获得足够的整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信