Resource Allocation with Admission Control for GBR and Delay QoS in 5G Network Slices

Tulja Vamshi Kiran Buyakar, Harsh Agarwal, T. B. Reddy, A. Franklin
{"title":"Resource Allocation with Admission Control for GBR and Delay QoS in 5G Network Slices","authors":"Tulja Vamshi Kiran Buyakar, Harsh Agarwal, T. B. Reddy, A. Franklin","doi":"10.1109/COMSNETS48256.2020.9027310","DOIUrl":null,"url":null,"abstract":"Network slicing is an integral part of 5G, which supports next-generation wireless applications over a shared network infrastructure. It paves the way to leverage the full potential of 5G by increasing the efficiencies through differentiation and faster time-to-market. In this work, we propose a Mobile Virtual Network Operator (MVNO) Slice Resource Allocation Architecture (MSRAA) for supporting different network slices in the 5G data plane. MSRAA supports QoS parameters, including Guaranteed Bit Rate (GBR) and Maximum Delay Budget. Using long short-term memory (LSTM) neural networks, we predict network slices bandwidth requirements for efficiently allocating the resources. To reduce revenue loss to the network operators due to forecasting errors, the proposed Bandwidth Admission Control (BAC) algorithm, reallocates resources from lower priority slices (e.g., best-effort users) to higher priority slices (e.g., guaranteed service users). Using Mondrain Random Forests in our Delay Admission Control (DAC) algorithm, we predict the end-to-end delay and admit flows into slices that can satisfy delay requirements. We implement MSRAA on our advanced 5G Core testbed and evaluate User Service Request (USR) acceptances and do a complete cost-benefit analysis of our architecture. We show that for eMBB-GBR and eMBB-Non-GBR slices, our algorithm is showing a significant reduction in costs.","PeriodicalId":265871,"journal":{"name":"2020 International Conference on COMmunication Systems & NETworkS (COMSNETS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on COMmunication Systems & NETworkS (COMSNETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSNETS48256.2020.9027310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Network slicing is an integral part of 5G, which supports next-generation wireless applications over a shared network infrastructure. It paves the way to leverage the full potential of 5G by increasing the efficiencies through differentiation and faster time-to-market. In this work, we propose a Mobile Virtual Network Operator (MVNO) Slice Resource Allocation Architecture (MSRAA) for supporting different network slices in the 5G data plane. MSRAA supports QoS parameters, including Guaranteed Bit Rate (GBR) and Maximum Delay Budget. Using long short-term memory (LSTM) neural networks, we predict network slices bandwidth requirements for efficiently allocating the resources. To reduce revenue loss to the network operators due to forecasting errors, the proposed Bandwidth Admission Control (BAC) algorithm, reallocates resources from lower priority slices (e.g., best-effort users) to higher priority slices (e.g., guaranteed service users). Using Mondrain Random Forests in our Delay Admission Control (DAC) algorithm, we predict the end-to-end delay and admit flows into slices that can satisfy delay requirements. We implement MSRAA on our advanced 5G Core testbed and evaluate User Service Request (USR) acceptances and do a complete cost-benefit analysis of our architecture. We show that for eMBB-GBR and eMBB-Non-GBR slices, our algorithm is showing a significant reduction in costs.
基于GBR和延迟QoS的5G网络分片资源分配
网络切片是5G的一个组成部分,它支持在共享网络基础设施上的下一代无线应用。它通过差异化和更快的上市时间提高效率,为充分利用5G的全部潜力铺平了道路。在这项工作中,我们提出了一种移动虚拟网络运营商(MVNO)切片资源分配架构(MSRAA),以支持5G数据平面的不同网络切片。MSRAA支持QoS参数,包括保证比特率(GBR)和最大延迟预算。利用长短期记忆(LSTM)神经网络,我们预测网络片带宽需求,以有效地分配资源。为了减少网络运营商因预测错误而造成的收入损失,提出的带宽准入控制(Bandwidth Admission Control, BAC)算法将资源从低优先级分片(如“最努力用户”)重新分配到高优先级分片(如“保证业务用户”)。在我们的延迟接纳控制(DAC)算法中使用Mondrain随机森林,我们预测端到端延迟,并允许流进入能够满足延迟要求的切片。我们在先进的5G核心测试平台上实施MSRAA,评估用户服务请求(USR)接受情况,并对我们的架构进行完整的成本效益分析。我们表明,对于eMBB-GBR和eMBB-Non-GBR切片,我们的算法显着降低了成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信