Random Coefficient Model of Basal Area Growth for Longitudinal Data

Zhang Qing, Z. Junhui, Kang Xin-gang
{"title":"Random Coefficient Model of Basal Area Growth for Longitudinal Data","authors":"Zhang Qing, Z. Junhui, Kang Xin-gang","doi":"10.1109/ICNC.2009.636","DOIUrl":null,"url":null,"abstract":"Basal Area Growth model play an important role in forest management. In the permanent forest plots, the measures of BA growth are taken repeatedly over time, each stand has its individual trajectory. It is necessary to model both main response and individual trajectory of forest stands BA. In this paper, we show how a new random coefficient model of stands Basal Area Growth, which is developed based on longitudinal data. Through comparing the goodness of fit Statistics for different error structures, the optimal model is with AR(1) error structure.","PeriodicalId":235382,"journal":{"name":"2009 Fifth International Conference on Natural Computation","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fifth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2009.636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Basal Area Growth model play an important role in forest management. In the permanent forest plots, the measures of BA growth are taken repeatedly over time, each stand has its individual trajectory. It is necessary to model both main response and individual trajectory of forest stands BA. In this paper, we show how a new random coefficient model of stands Basal Area Growth, which is developed based on longitudinal data. Through comparing the goodness of fit Statistics for different error structures, the optimal model is with AR(1) error structure.
纵向数据基底面积增长的随机系数模型
基础面积生长模式在森林经营中起着重要的作用。在常年林样地,BA的生长随时间反复测量,每个林分都有自己的生长轨迹。建立林分BA的主要响应和个体轨迹模型是必要的。本文提出了一种基于林分纵向数据的林分基面积生长随机系数模型。通过比较不同误差结构的拟合优度统计,最优模型为AR(1)误差结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信