Dual Quantization for random walks with application to credit derivatives

G. Pagès, B. Wilbertz
{"title":"Dual Quantization for random walks with application to credit derivatives","authors":"G. Pagès, B. Wilbertz","doi":"10.21314/JCF.2012.239","DOIUrl":null,"url":null,"abstract":"We propose a new Quantization algorithm for the approximation of inhomogeneous random walks, which are the key terms for the valuation of CDO-tranches in latent factor models. This approach is based on a dual quantization operator which posses an intrinsic stationarity and therefore automatically leads to a second order error bound for the weak approximation. We illustrate the numerical performance of our methods in case of the approximation of the conditional tranche function of synthetic CDO products and draw comparisons to the approximations achieved by the saddlepoint method and Stein's method.","PeriodicalId":197400,"journal":{"name":"arXiv: Computational Finance","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21314/JCF.2012.239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We propose a new Quantization algorithm for the approximation of inhomogeneous random walks, which are the key terms for the valuation of CDO-tranches in latent factor models. This approach is based on a dual quantization operator which posses an intrinsic stationarity and therefore automatically leads to a second order error bound for the weak approximation. We illustrate the numerical performance of our methods in case of the approximation of the conditional tranche function of synthetic CDO products and draw comparisons to the approximations achieved by the saddlepoint method and Stein's method.
随机漫步的对偶量化及其在信用衍生品中的应用
我们提出了一种新的量化算法来逼近非齐次随机游走,这是潜在因素模型中cdo评级的关键术语。该方法基于对偶量化算子,该算子具有固有的平稳性,因此会自动导致弱逼近的二阶误差界。我们举例说明了我们的方法在合成CDO产品的条件分段函数近似情况下的数值性能,并与鞍点法和Stein方法所获得的近似进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信