Big Data-Driven Platform for Cross-Media Monitoring

L. Napalkova, Pablo Aragón, Juan Carlos Castro Robles
{"title":"Big Data-Driven Platform for Cross-Media Monitoring","authors":"L. Napalkova, Pablo Aragón, Juan Carlos Castro Robles","doi":"10.1109/DSAA.2018.00051","DOIUrl":null,"url":null,"abstract":"The abundance of online media content requires highly scalable architectures to allow cross-media monitoring. This paper presents an innovative big data-as-a-service platform for analysing large complex networks in order to enhance cross-media monitoring. In contrast to the existing media monitoring systems, the platform equips marketers with several distinctive features. First, while most of the systems perform quantitative exploratory analysis of social media, our platform applies graph analytics in order to reveal social interaction types, hidden patterns in the cross-media network and the information diffusion over time. Second, our platform integrates and implements distributed versions of graph analytics algorithms (Louvain, HITS and others) that can scale to a large volume of data. Third, the creation of cross-media graphs is triggered by user-defined queries that can be easily specified by marketers. Thus, end-users can build and analyse different graphs according to specific goals of the study. Finally, the platform allows reducing Hadoop cluster usage costs due to executing the graph mining algorithms on demand triggered by user-defined queries. Instead of running costly streaming processes that continuously listen for new queries, we implemented Spark-as-a-service approach via Apache Livy REST interface.","PeriodicalId":208455,"journal":{"name":"2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA.2018.00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The abundance of online media content requires highly scalable architectures to allow cross-media monitoring. This paper presents an innovative big data-as-a-service platform for analysing large complex networks in order to enhance cross-media monitoring. In contrast to the existing media monitoring systems, the platform equips marketers with several distinctive features. First, while most of the systems perform quantitative exploratory analysis of social media, our platform applies graph analytics in order to reveal social interaction types, hidden patterns in the cross-media network and the information diffusion over time. Second, our platform integrates and implements distributed versions of graph analytics algorithms (Louvain, HITS and others) that can scale to a large volume of data. Third, the creation of cross-media graphs is triggered by user-defined queries that can be easily specified by marketers. Thus, end-users can build and analyse different graphs according to specific goals of the study. Finally, the platform allows reducing Hadoop cluster usage costs due to executing the graph mining algorithms on demand triggered by user-defined queries. Instead of running costly streaming processes that continuously listen for new queries, we implemented Spark-as-a-service approach via Apache Livy REST interface.
大数据驱动的跨媒体监控平台
丰富的在线媒体内容需要高度可扩展的体系结构来支持跨媒体监控。本文提出了一种创新的大数据即服务平台,用于分析大型复杂网络,以增强跨媒体监控。与现有的媒体监控系统相比,该平台为营销人员提供了几个与众不同的功能。首先,虽然大多数系统对社交媒体进行定量探索性分析,但我们的平台应用图形分析来揭示社交互动类型,跨媒体网络中的隐藏模式以及信息随时间的传播。其次,我们的平台集成并实现了分布式版本的图形分析算法(Louvain, HITS等),可以扩展到大量数据。第三,跨媒体图表的创建是由用户定义的查询触发的,营销人员可以很容易地指定这些查询。因此,最终用户可以根据研究的具体目标构建和分析不同的图表。最后,该平台允许减少Hadoop集群的使用成本,因为它可以按需执行由用户定义的查询触发的图挖掘算法。我们通过Apache Livy REST接口实现了Spark-as-a-service方法,而不是运行昂贵的流处理,不断地监听新的查询。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信