DREAM: Dynamic data relation extraction using adaptive multi-agent systems

Elhadi Belghache, J. Georgé, M. Gleizes
{"title":"DREAM: Dynamic data relation extraction using adaptive multi-agent systems","authors":"Elhadi Belghache, J. Georgé, M. Gleizes","doi":"10.1109/ICDIM.2017.8244684","DOIUrl":null,"url":null,"abstract":"Understanding data is the main purpose of data science and how to achieve it is one of data science challenges, especially when dealing with big data. In order to find meaning and relevant information drowned in the data flood, while overcoming big data challenges, one should rely on an analytic tool able to find relations between data, evaluate them and detect their changes and evolution over time. The aim of this paper is to present the DREAM1 tool for dynamic data relations discovery and dynamic display based on a collective artificial intelligence Adaptive Multi-Agent System (AMAS) that uses a new data similarity metric, the Dynamics Correlation. It is currently being applied in the neOCampus operation, the ambient campus of the University of Toulouse III — Paul Sabatier.","PeriodicalId":144953,"journal":{"name":"2017 Twelfth International Conference on Digital Information Management (ICDIM)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Twelfth International Conference on Digital Information Management (ICDIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIM.2017.8244684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Understanding data is the main purpose of data science and how to achieve it is one of data science challenges, especially when dealing with big data. In order to find meaning and relevant information drowned in the data flood, while overcoming big data challenges, one should rely on an analytic tool able to find relations between data, evaluate them and detect their changes and evolution over time. The aim of this paper is to present the DREAM1 tool for dynamic data relations discovery and dynamic display based on a collective artificial intelligence Adaptive Multi-Agent System (AMAS) that uses a new data similarity metric, the Dynamics Correlation. It is currently being applied in the neOCampus operation, the ambient campus of the University of Toulouse III — Paul Sabatier.
梦想:使用自适应多智能体系统的动态数据关系提取
理解数据是数据科学的主要目的,如何实现这一目标是数据科学的挑战之一,尤其是在处理大数据时。为了找到淹没在数据洪流中的意义和相关信息,在克服大数据挑战的同时,我们应该依靠一种分析工具,能够发现数据之间的关系,对它们进行评估,并检测它们随时间的变化和演变。本文的目的是介绍DREAM1工具,用于动态数据关系发现和动态显示,该工具基于集体人工智能自适应多代理系统(AMAS),该系统使用新的数据相似度度量,即动态相关性。它目前被应用于新校园的运作,图卢兹大学的环境校园-保罗萨巴蒂耶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信