A novel neuro-fuzzy classification system design by a species-based hybrid algorithm

Ching-Hung Lee, Hsin-Wei Chiu, Chung-Ta Li
{"title":"A novel neuro-fuzzy classification system design by a species-based hybrid algorithm","authors":"Ching-Hung Lee, Hsin-Wei Chiu, Chung-Ta Li","doi":"10.1109/ICMLC.2010.5580807","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel neuro-fuzzy classification system by a species-based hybrid of electromagnetism-like mechanism and back-propagation algorithms (SEMBP). The neuro-fuzzy classification system is constructed by an interval type-2 fuzzy neural system with asymmetric membership functions (AIT2FNS). The hybrid algorithm SEMBP combines the advantages of EM and BP algorithms. Three classification problems: the XOR data set, the breast cancer data set, and the Iris data set are used to illustrate the performance of our approach.","PeriodicalId":126080,"journal":{"name":"2010 International Conference on Machine Learning and Cybernetics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2010.5580807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a novel neuro-fuzzy classification system by a species-based hybrid of electromagnetism-like mechanism and back-propagation algorithms (SEMBP). The neuro-fuzzy classification system is constructed by an interval type-2 fuzzy neural system with asymmetric membership functions (AIT2FNS). The hybrid algorithm SEMBP combines the advantages of EM and BP algorithms. Three classification problems: the XOR data set, the breast cancer data set, and the Iris data set are used to illustrate the performance of our approach.
一种基于物种混合算法的神经模糊分类系统设计
本文提出了一种基于物种的类电磁机制和反向传播算法(SEMBP)混合的神经模糊分类系统。该神经模糊分类系统采用具有非对称隶属函数的区间2型模糊神经系统(AIT2FNS)构造。SEMBP混合算法结合了EM算法和BP算法的优点。三个分类问题:XOR数据集、乳腺癌数据集和虹膜数据集被用来说明我们的方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信